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0. About This Work

The sciences do not try to explain, they hardly even try
to interpret, they mainly make models. By a model is
meant a mathematical construct which, with the addi-
tion of certain verbal interpretations, describes observed
phenomena. The justification of such a mathematical
construct is solely and precisely that it is expected to
work - that is correctly to describe phenomena from a
reasonably wide area. Furthermore, it must satisfy cer-
tain esthetic criteria - that is, in relation to how much it
describes, it must be rather simple.

John von Neumann, “Method in the Physical Sciences”,
in The Unity of Knowledge (1955)

This chapter offers an overview of the thesis. This thesis includes a
didactic introduction that precedes the six featured publications.

0.0.1 Motivation behind the thesis

The COVID-19 pandemic, a stark reminder of our vulnerability to in-
fectious diseases, was neither the first nor will it be the last pandemic
humanity confronts. This recent global health crisis underscores the ur-
gent need for preparedness against future pandemics. Pandemics, by their
very nature, can be devastatingly deadly, rapidly overwhelming health-
care systems and causing widespread social and economic disruptions.
The unpredictable nature of viral mutations and the interconnectedness
of our world only exacerbate these risks. Therefore, understanding the
mechanisms of pandemic spread, including the role of social networks and
human behavior, is crucial [164, 165, 158, 115]. This knowledge not only
aids in developing effective intervention strategies [163] but also helps
mitigate the severe consequences that unchecked pandemics can impose on
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global health, economies, and societies [124]. Our future resilience lies in
learning from past experiences, investing in public health infrastructure,
advancing scientific research, and fostering global cooperation to manage
and ultimately prevent the devastating impact of pandemics.

This research explores the intricate dynamics of how diseases spread
through the complex networks of human societies [151], evaluating the
effectiveness of different interventions within these interconnected popu-
lations [113, 112, 80, 78]. It emphasizes the critical role that the detailed
connections between individuals play in influencing the spread and sever-
ity of epidemics [150]. The study introduces theoretical frameworks that
better reflect certain aspects of real-world situations. A significant aspect
of network epidemiology [53] examined in this work is how the structural
and spatial characteristics of networks influence the effectiveness of herd
immunity [92]. The focus is on deciphering the structure and dynam-
ics of contact networks [177, 13, 12], particularly in understanding how
specific health behaviors influence disease transmission [105, 93]. The
research employs stylized models to demonstrate the significant impact
of homophily in hesitancy in adopting Contact Tracing Apps and vaccine
reluctance on achieving herd immunity [184, 105, 93]. The aim of these
models is not to comprehensively represent the complexities of actual epi-
demics but to illustrate the potential effects of certain network structures
and health behaviors, as well as non-pharmaceutical interventions like
contact tracing, on the outcomes of epidemics.

Building on this foundation, the ultimate goal of this thesis is to high-
light the importance of the contact network structure in modeling disease
spreading and act as a guide for showing what kind of network structures
can be crucial in building epidemic models. It’s important to note that
our approach to understanding the spread of infectious diseases follows
a “modeling for insight" methodology. Our goal is to gain a deeper under-
standing of the underlying dynamics of these diseases, so we can provide
insights into more effective public health strategies and interventions. I
want to emphasize that our spherical cow models [30] are not intended
to fit data directly. Instead, they aim to broaden the conceptual frame-
work within which we understand and respond to epidemics. For readers
keen on exploring a data-driven approach to modeling and predicting the
global spread of infectious diseases using real-world data, I suggest diving
into “Charting the Next Pandemic" by y Piontti et al. [206]. Our work
contributes to academic discourse and provides a foundation for future em-
pirical research in support of society’s ongoing efforts to enhance resilience
against infectious diseases.
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0.0.2 Structure of the thesis

In Chapter 1, I present an introductory survey of Mathematical Epidemi-
ology, focusing on compartmental models. The chapter delves into the
historical context of translating epidemiological challenges into mathe-
matical frameworks. Central to this exploration is the mass-action or
fully-mixed population hypothesis, which enables the application of cal-
culus tools to model population dynamics using differential equations. I
comprehensively review essential epidemiological concepts and demon-
strate their translation into mathematical terms. This chapter lays the
groundwork for our understanding of how to formalize models that describe
the spread of epidemics. I conclude with a discussion on the limitations of
the models discussed, particularly the inadequacy of the fully-mixed popu-
lation assumption for complex, structured human populations. I illustrate
this point by examining vaccination strategies, showing how conventional
infectious disease models fall short of accurately predicting vaccine quanti-
ties required for achieving herd immunity to ensure the safety of an entire
population, including the unvaccinated.

In Chapter 2, I provide an accessible introduction to network science,
outlining the essential concepts and methodologies that will be applied to
more accurately model infectious diseases. I explore the critical aspects
of human population structure that can significantly influence epidemic
outcomes. The chapter navigates various random network models, their
characteristics, and the phase transition phenomena observable in static
and temporal network contexts.

Equipped with the insights and techniques from these two chapters, we
embark on a detailed study of epidemic modeling on complex networks. In
Chapter 3, I discuss how our foundational knowledge of spreading and dif-
fusion processes can be applied to quantify epidemic behavior on networks.
The chapter introduces various mean-field approximations and other mod-
eling techniques. I emphasize that epidemic modeling on networks can
reveal non-trivial dynamics, which are crucial for understanding effective
epidemic control.

0.0.3 Scope of the thesis

A patient reader with a good background in science can follow the research
papers presented in this work after reading the following three chapters.
The theoretical minimum required for understanding them is a working
knowledge of probability theory, calculus, and linear algebra. I also rec-
ommend Newman’s book [151] as a network textbook and Diekmann et al.
book [55] for a general understanding of mathematical epidemiology.

On another note, you should know that I grew up in the physics culture,
and I like borrowing the tools and perspectives of that field and trying to
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combine them with new ideas and techniques to tackle interdisciplinary
problems. So, in terms of technicality and jargon, what follows in this
work is not only written with the notation that is the best to the taste of a
physicist but also the mathematical rigor that I have gone through is more
physics-friendly than mathematics-friendly. A background in physics, with
a focus on statistical mechanics, ideally equips you to engage with and
understand the complexities of this work.

This is not a theorem and proof thesis, but I have mentioned resources
where you can find more rigorous mathematical arguments. So, if you have
a math background, you will have many exciting puzzles to think about
after reading each chapter. I also invite you to delve into some proof to
turn this work into an even better investment in your time. For a more
mathematical approach to networks, I recommend referring to Random
Graphs and Complex Networks by Van der Hofstad [194]. Depending on
their particular field of study, computer scientists should also be capable
of comprehending this work, albeit not as effortlessly as physicists. If you
are more from an engineering background, you will find simulations in our
papers very interesting. While this work leans heavily on mathematical
modeling, it stands as an inviting challenge for epidemiologists keen on
extending their professional skill set in this exciting direction. Moreover,
they may find some of our models not precisely suitable to describe some
particular phenomenon, as in this work, we have done our best to come up
with reasonably simple mathematical models to explain the physics behind
spreading phenomena and, more importantly, get the phenomenology right.
Believe me, it is no less deserving of scrutiny!

In conclusion, writing this work has been a thoroughly enjoyable experi-
ence for me. Above all, I sincerely hope you find equal pleasure in reading
it.

Like most mathematicians, he takes the hopeful biologist to the
edge of a pond, points out that a good swim will help his work,
and then pushes him in and leaves him to drown.

C. Elton, 1935 review on the mathematical ecology work of Lotka.

What is physics? To me, ... the central idea was that the
world is understandable, that you should be able to take anything
apart, understand the relationships between its constituents, do
experiments, and on that basis be able to develop a quantitative
understanding of its behavior.

John Hopfield, 2018, Now What?
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1. Mathematical Epidemiology in One
Sitting

I simply wish that, in a matter which so
closely concerns the well-being of the human
race, no decision shall be made without all
knowledge which a little analysis and calcu-
lation can provide.

D. Bernoulli, 1760, on smallpox inoculation

It is not easy to say precisely when and by whom the foundations of
Mathematical Epidemiology were established. Here, by Mathematical
Epidemiology, I primarily refer to a rigorous quantitative framework for
studying how infectious diseases spread, predicting what might happen
during an outbreak, and figuring out how to control it. One can argue
that John Graunt, a businessman admitted to the Royal Society, lit the
torch in the 17th century with a new approach to the analysis of causes
of death in London [145]. Graunt did an excellent job of bookkeeping
the so-called “Bills of Mortality” which were weekly records of numbers
and causes of death in London parishes from 1592 to 1603 and tried to
quantify causes of death in a systematic way [84]. Based on real data, he
predicted the percentage of people who would live to different ages and
their year-by-year life expectancy. Among his observations, he also noticed
that in cities, more people died than in rural areas, and while more boys
were born than girls, higher male mortality balanced it out, resulting in a
nearly equal gender distribution in the population [171].

I admire Graunt’s contribution to the field of epidemiology. His innovative
analysis of the tables of health data (Bills of Mortality) is commendable,
and from a technical perspective, his work can be recognized as seminal
in Quantitative Epidemiology. However, when we consider the monumen-
tal significance of Daniel Bernoulli’s 1766 paper, it becomes clear that
this work forms the cornerstone of Mathematical Epidemiology. Graunt
may have lit the torch, but Bernoulli’s work led to a wildfire! Bernoulli
introduced the first compartmental model of infectious disease in that
work and used mathematical reasoning to argue for universal inoculation
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against smallpox. Compartmental models in epidemiology allow us to strip
unnecessary complicating factors away from disease dynamics to gain a
reasonable understanding of such spreading phenomena. I will explain
compartmental models and the effectiveness of interventions in a more
pedagogical way in this section. For a more historical note on Bernoulli’s
epidemiological model, I recommend referring to Ref. [60]. Ref. [55] also
serves as an excellent guide for those aiming to learn the formulation and
analysis of mathematical models in infectious disease epidemiology.

As a matter of fact all epidemiology, concerned as
it is with variation of disease from time to time or
from place to place, must be considered mathemat-
ically, if it is to be considered scientifically at all.
And the mathematical method of treatment is re-
ally nothing but the application of careful reasoning
to the problems at hand.

Sir Ronald Ross, 1911, The Prevention of Malaria

1.1 Things to Consider When Modeling Epidemics

Let us begin with the epidemic in a closed population in a demographic
steady state, with no history of a given infection or introduction of any
intervention. We are also interested in spreading phenomena that take
place in naive populations at particular time scales, often much smaller
than fluctuations in population due to the birth or death of people out of epi-
demiological reasons. By naive, we mean every individual lacks immunity
or immunologic memory to a disease and is susceptible to infection.

Imagine a population with only one infected person (seed of infection) at
day zero. If an infected person can infect R0 > 1 more susceptible people,
this process would undergo a deterministic exponential growth such that
the number of infected people after t generations, εt, would be given by the
following geometric series:

εt = 1+R0 +R2
0 + ...+R t

0 =
R t+1

0 −1
R0 −1

. (1.1)

We call εt the epidemic size after t generations. The first lesson from
the mathematics of this equation is that if R0 < 1, then in finite time,
the disease spreading will die out. Compared to the population size, the
epidemic size would be negligible even if we start with more than one
infected person. For mathematical tractability, we model the epidemics
in the thermodynamic limit, meaning that we assume the size of the
population, a.k.a. the system size, N, is large enough so that we can
follow the problem in the limit that N → ∞. Therefore, the size of the
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epidemic compared to the population size will be zero when R0 < 1. Even
if we consider that every person can, on average, infected R0 susceptible
people and R0 is drawn from some distribution with finite first and second
moments, one can easily show we again end up with a similar conclusion,
this time through a stochastic growth know as Galton–Watson process
[55].

However, since R0, here, represents the expected number of people sec-
ondarily infected, which is an integer, the epidemic’s size will increase
monotonically without an epidemic threshold. According to this model, a
massive outbreak comparable in scale to the population size will invariably
occur swiftly.

Disease Basic Reproduction Number
Measles 12–18

Chickenpox (Varicella) 10–12

Mumps 10–12

Rubella 6–7

Polio 5–7

Pertussis (Whooping Cough) 5.5

Smallpox 3.5–6.0

HIV/AIDS 2–5

COVID-19 (Ancestral Strain) 2.9 (2.4–3.4)

SARS 2–4

Diphtheria 2.6 (1.7–4.3)

Common Cold (e.g., Rhinovirus) 2–3

Mpox 2.1 (1.5–2.7)

Ebola (2014 Outbreak) 1.8 (1.4–1.8)

Influenza (Seasonal Strains) 1.3 (1.2–1.4)

Andes Hantavirus 1.2 (0.8–1.6)

Nipah Virus 0.5

MERS 0.5 (0.3–0.8)

Table 1.1. Basic Reproduction Numbers of Various Infectious Diseases [59, 54, 27].

Table 1.1 compares the average number of secondary infections, com-
monly referred to as the basic reproduction number, for various diseases.
Assume a hypothetical scenario such that R0 = 3, which is a reasonable
number for some severe infectious diseases [59, 54] as it was estimated
for some analysis during the COVID-19 pandemic [27]. Then, when t = 10,
more than 88,000 people will be infected, and after 30 generations, it will
reach more than 100 trillion people, much larger than the entire earth’s
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population. This astronomically big number does not make sense at all,
as, in reality, many boundary conditions control such exponential growth.
Obviously, there should be a cut-off; the process must cease when every-
one is infected. We explicitly did not account for reinfection or recovery
in this model. People may recover from the disease in a different time
scale and gain immunity against reinfection. Therefore, in practice, every
infected person cannot keep infecting R0 more people as the spreading
process unfolds. Not everyone has access to enough susceptible cases after
the epidemic’s early stages. Ultimately, the exponential growth should
be saturated as we run out of susceptible people. On top of these, people
change their social behavior [176] as they face a wave of infection, so either
individuals on their own try to protect themselves from infection or some
external effects such as seasonality or high-level social constructs such as
governments will impose regulations and apply interventions to curb the
epidemic. Therefore, for more realistic modeling, we need to consider all
these scenarios, one at a time, and then try to consider them all together
to the extent that we can handle the arising complexity of the problem.

1.1.1 Continuous and Discrete Time Modeling

Epidemic modeling on networks employs continuous and discrete time
models, each with distinct advantages [161, 42, 198]. Continuous-time
models, often formulated with non-linear differential equations, are helpful
for uninterrupted changes but may not always accurately represent the
epidemic spread [152]. On the other hand, discrete-time models, described
by difference equations, align better with the discrete nature of epidemic
data collection and are easier to implement in computer simulations. They
may also offer a more granular view of the spread, accounting for spe-
cific time intervals and potentially capturing the spatial dependencies
between individuals more accurately. Both methods are valuable, and
we will use them in modeling epidemics on networks depending on our
modeling requirements and objectives. In this section, we will continue
with continuous-time compartmental models as they are beneficial for
pedagogical purposes, leveraging calculus tools to elucidate the dynamics
of disease spread. We will later show how we can formulate such models
within discrete-time settings. In our publications, we utilize both contin-
uous and discrete-time modeling approaches to capture the nuances of
disease spread in networks.

1.2 Compartmental Models in Epidemiology

A convenient way to model epidemics is to divide people into groups, com-
monly known as compartments, and develop equations that govern how

26



Mathematical Epidemiology in One Sitting

one person leaves one and joins the other. Compartmental models provide
a useful abstraction of disease dynamics by making it easier to track and
predict the course of an epidemic, as the equations describe the rate at
which people move from one compartment to another.

1.2.1 The SI Model

In the previous example, every individual was either susceptible or infected
in a population of size, say, N and preferably N →∞. So, one can assign
each individual to compartments with labels S and I, respectively, such that
the size of the compartments respects the conservation of population size,
S+ I = N. Compartment S initially begins with N −1 members, and people
transition from that compartment to compartment I following Eq. 1.1. This
model is an SI model, as there are only two compartments S and I, and
people may progress between them following the order of labels in the title;
S→ I.

In Section 1.1.1, we explored how infectious diseases can be modeled in
both continuous and discontinuous time frames. For simplicity, we will
proceed with our epidemic modeling using a continuous-time approach.
Additionally, we will address the issue of unbounded exponential growth
identified in the earlier model. This will be achieved by employing the
fully mixed or mass-action approximation [69]. Our method involves repre-
senting the interactions between different compartments using differential
equations. Depending on our modeling perspective, the interactions be-
tween the compartments can be given through some rate equations or
transition probabilities—the former leads to deterministic dynamics, and
the latter leads to stochastic ones. So, given that each person, on aver-
age, interacts with β other randomly chosen people per unit time, we can
rewrite the previous model with the following equations,

ds
dt

=−βsi, or/and

di
dt

=βsi ,

(1.2)

where s and i are the expected numbers of susceptible and infected indi-
viduals normalized by the population size N such that s+ i = 1. Note that
as they are average values, they may not be integers, in general, while the
actual numbers of susceptible and infected people are always integers. If
we were to repeat the epidemic dynamics given by Eq. 1.2 multiple times
under the same conditions and then take the average, these would be the
values we’d arrive at.

We can eliminate s from Eq. 1.2 as s = 1− i and easily arrive at the
solution that yields a “logistic growth curve” for the fraction of infected
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individuals given by

i(t)= i0eβt

1− i0 + i0eβt , (1.3)

where i0 = i(0) ≪ 1 is the size of the seed of infection normalized by the
population size. According to this equation, as depicted in Fig. 1.1, the
expected number of infected individuals initially grows exponentially with
the characteristic time 1

β
, and then saturates for large t, as t →∞.
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Figure 1.1. Logistic growth curve in the SI Epidemic Model as given by Eq. 1.2. The
expected fraction of infected people within an SI model initially escalates
exponentially. However, as the reservoir of susceptible individuals depletes
over time, the growth rate reaches a saturation level, leading to a plateau in
the curve as indicated by the dashed line.

As highlighted in Sec. 1.1, the SI model is overly simplistic for most
practical applications. Despite its exponential growth, which aligns with
many spreading phenomena in their early stages, it leads to the infection
of the whole population when i0 > 0, overestimating the final size of most
outbreaks. The epidemic size may rapidly increase at the very early
stages of an epidemic, but it slows down at higher rates due to natural
immunity or facing interventions, and it almost never gets that close to
the population size. Nevertheless, we can still learn from the SI model, as
in the early stages of most epidemics, the number of infected people grows
exponentially with the per-individual rate β similar to i(t ≈ 0)= i0eβt.
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1.2.2 The SIR Model

A reasonable improvement to the SI model is to consider that people recover
from the disease after some time and gain immunity against reinfection.
So, we add a third compartment to our model, letting people leave the
infected compartment with some rate and join the recovered compartment
R, giving rise to the transition pattern S→ I→ R.

This three-state model is called the susceptible–infected– recovered or
SIR model. You can find “SIR” in the literature as an acronym for different
terms. Some may use removed instead or along with the recovered state as,
in general, the person is now removed from interacting with others in the
population. Regrettably, some diseases result in death rather than recovery,
so the dead person is removed. For the sake of modeling, both of them can
be considered in this model, and individuals in the R compartment would
not take part in infecting other people. In concise terms, R is where people
transition from the I compartment. In Sec. 1.3.1, we will demonstrate
how vaccination can prevent individuals from contributing to the spread
of infection, and in Sec. 3.9, we will explore how isolating or quarantining
people can yield similar results. I can also stand for infected or infectious,
as being infected does not necessarily imply being contagious. One may
get infected but may never pass it on or do it after some period of time.
However, from now on, everywhere we say infected, we mean the same
thing as infectious, and we use them interchangeably unless otherwise
noted.

To describe the dynamics of the SIR model, we use the same mass-action
approximation and per-individual rate β as we used in Sec. 1.2.1, but this
time, we let people leave the I compartment, with the constant average
rate γ so that the fraction of recovered people, r, changes as dr

dt = γi. Here,
the conservation of population size implies s+ i+ r = 1, and the changes in
each compartment would be summarized as:

ds
dt

=−βsi,

di
dt

=βsi−γi ,

dr
dt

= γi.

(1.4)

There is no closed-form solution for the SIR model. However, a numerical
solution is presented in Fig. 1.2.

Looking at Fig. 1.2, it is interesting to observe how the infection curve
ascends, slows down, and then descends. This curve illustrates the real-
time count of infected individuals, which is quite useful for a range of
practical situations. For instance, in a city with limited hospital capacity,
if the maximum of this curve surpasses what the hospitals can manage,
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Figure 1.2. Evolution of the susceptible, infected, and recovered populations over time,
based on the SIR model given. The model was integrated using parameters
β= 1.2 (transmission rate) and γ= 0.4 (recovery rate). Initial conditions were
set with 99% of the population as susceptible, 1% as infected, and 0% as
recovered. The Infected curve is represented with a solid line for a clear
distinction. The horizontal dashed line indicates the maximum value of 1 for
the fraction of the population, which will always be larger than the fraction of
recovered people.

things could get pretty challenging, especially with severe diseases in the
mix. The “Flattening The Curve” strategy was all about promoting actions
to lower this peak, aiming to ease the pressure on the healthcare system
as the maximum number of individuals needing medical attention at any
given time is minimized [135]. As shown in Fig. 1.3, this ensures the
healthcare system is not overwhelmed. During the COVID-19 pandemic,
key measures to achieve this were hand hygiene, wearing face masks, and
practicing social distancing [136] to reduce the value for β.

Fig. 1.2 also shows that the value of r rises monotonically, yet it never
gets to one. Similarly, the susceptible curve does not touch zero. This
suggests that a portion of the population stays susceptible over time. The
value of r reflects the total fraction of infected people up to time t, so the
asymptotic value of r indicates the total size of the epidemic. From now
on, we will always report the size of the epidemic as a fraction of the whole
population.

We cannot solve the SIR model analytically, as it is not solvable by
elementary functions in its standard form [89, 123]. However, we can
study it at the t →∞ limit. Using equation Eq. 1.4, after some algebra,
we can show the changes in r in a large population with a small seed of
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Figure 1.3. Time evolution of i(t) for two different values of β. By adopting measures
like hand washing, social distancing, and wearing face masks, the peak of
active cases can be both lowered and postponed. This delay provides valuable
time for healthcare systems to expand and handle the influx of patients more
effectively. Consequently, this strategy of flattening the curve also offers an
opportunity to enhance healthcare capabilities to accommodate the increased
demand.

infection, can be given as [151]

dr
dt

= γ(1− r− e−βr/γ). (1.5)

When t →∞, dr
dt = 0 which gives

r∞ = 1− e−βr∞/γ, (1.6)

where r∞ is the final epidemic size. This equation is transcendental in
r∞, and one typically finds the solution graphically. They would also know
that r∞ = 0 is a trivial solution, but its stability as a fixed point of iteration
depends on the value of β/γ. If β⩽ γ, then r∞ = 0 is a stable fixed point,
which makes sense intuitively, as it suggests that if people recover from
the disease faster than new infections occur, the disease will eventually
die out exponentially fast. In simpler terms, in the long run, and the
thermodynamic limit, the epidemic size will tend to be zero when recovery
outpaces new infections. However, if β> γ, then r = 0 would be an unstable
solution, and the final epidemic size would be between zero and one.

To analyze the stability of the solution r = 0 for Eq. 1.5, we can use linear
stability analysis. This involves determining whether small perturbations
around the equilibrium solution r = 0 grow or decay over time. The general
approach is to linearize the differential equation around the equilibrium
point. Let’s denote a small perturbation around r = 0 by δ. When r = δ and
δ is small, we can approximate the exponential term using the first term
of its Taylor expansion, e−βδ/γ ≈ 1−βδ/γ, since higher-order terms will be
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negligibly small. Substituting this into the differential equation, we get:

dδ
dt

≈ γ(1−δ− (1−βδ/γ))= γ

(︃
βδ

γ
−δ
)︃
= γδ

(︃
β

γ
−1
)︃

.

So the linearized differential equation becomes:

dδ
dt

≈ δ(β−γ) .

From this, we can see that the sign of β−γ determines the behavior of
small perturbations δ: If β> γ, then β−γ> 0 and any small perturbation δ

will grow exponentially, which implies that the solution r = 0 is unstable. If
β< γ, then β−γ< 0 and any small perturbation δ will decay exponentially,
suggesting that the solution r = 0 is stable. Therefore, when β > γ, the
solution r = 0 is unstable because small deviations from this point will
increase over time rather than return to equilibrium.

The transition between having an epidemic and not having one occurs
at a specific point where β= γ, known as the epidemic threshold. It’s
important to contrast this with the simpler SI model, where there is
no such threshold. In the SI model, the disease spreads because once
individuals are infected, they never recover. This fundamental difference
means that the number of infected individuals in the SI model can never
decrease as opposed to the SIR model, where there’s a critical point where
the dynamics change, leading to the possibility of disease containment. In
other words, the SI can be considered as the special case of the SIR model
with γ= 0 so that β is larger than γ by design.

Given the value of γ, we can calculate for how long, τ, an infected person
is likely to remain infected before recovery. The probability of recovering in
any infinitesimal time window ∆t is γ∆t, and the probability of not doing
so is 1−γ∆t [151]. This means that the person is still infected after a total
time τ with probability

lim
∆t→∞

(1−γ∆t)τ/∆t = e−γτ. (1.7)

So, the probability that the person stays infected for time τ and recovers dt
later would be e−γτ×γdt leading to an exponential distribution [151]

p(τ)= γe−γτ, (1.8)

with mean infectious time 1/γ. The artifact of this model is that the
distribution of times for which an individual remains infected is not that
realistic. Based on Eq. 1.8, it is most likely for an individual to recover
just after infection. However, this likelihood diminishes exponentially over
time. Theoretically, a person could stay infected for a duration significantly
longer than the average infectious period, denoted as 1/γ. As depicted in
Fig. 1.4, for some diseases, people remain infected for a typical range of
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Figure 1.4. The SIR model suggests an individual has the highest likelihood of recovery
immediately post-infection, with chances decreasing exponentially over time.
However, there’s typically a consistent recovery timeframe for many diseases,
often peaking around a specific period, such as one or two weeks, as high-
lighted in the depicted distribution.

time, making its distribution narrowly peak around some expected value,
like one or two weeks [152].

We can employ p(τ) to determine the average number of individuals that
an infected person will infect before recovery, represented as R0, in a naive
population. Given that an individual stays infected for a duration τ, they
would, on average, result in βτ new infections due to their contacts. By
averaging over the distribution of τ, we can derive the average number R0

[151]:
R0 =βγ

∫︂ ∞

0
τe−γτdt = β

γ
. (1.9)

We call R0 the basic reproduction number as an indicator of how many
new infections can happen after a previous one [57]. Equation 1.9 offers
an alternative approach to deducing the epidemic threshold for the SIR
model: the threshold is at R0 = 1, consistent with our earlier findings based
on the long-term behavior of the I compartment mimicked with Eq. 1.6.

1.2.3 The Basic Reproduction Number

In the deterministic approach, compartmental models are often described
with ordinary differential equations, which, by design, have two fixed
points: disease-free equilibrium and endemic equilibrium. The stability
of these fixed points will be determined by evaluating the value of the
bifurcation parameter R0. Following Physics’ jargon, when R0 < 1, we say
the epidemic spreading is in the sub-critical regime. When R0 = 1, we
are at the critical point with many exciting phenomena [81], which I will
cover later in this thesis. An outbreak happens when R0 > 1, and following
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Figure 1.5. The epidemic can transition from a disease-free equilibrium state, with zero
epidemic size, to an endemic equilibrium with a positive epidemic size. In the
SIR model, the final epidemic size can be calculated using Eq. 1.6.

the same nomenclature, we call this regime super-critical, R0 the control
parameter and the epidemic size r∞ the order parameter of the spreading
phenomenon. In the thermodynamic limit, epidemic size vanishes in the
sub-critical regime and scales with the population size in the super-critical
regime.

In the SIR model, the final epidemic size can be given using Eq. 1.6 [151]
such that

r∞ = 1− e−R0r∞ . (1.10)

Fig. 1.5 shows the final epidemic size as a function of the basic reproduction
number, and we witness a phase transition at R0 = 1, commonly referred to
as the epidemic threshold.

1.2.4 The SIS Model

Another extension to the SI model is to consider the possibility of not
gaining immunity after infection and turning susceptible again. Making
the transition between the compartments as S→ I→ S. So, as opposed to
the SIR model, we let reinfection happen in this two-state model. The
governing equations in this model would be

ds
dt

=−βsi+γi,

di
dt

=βsi−γi ,

(1.11)

with s+ i = 1. This system of differential equations leads to:

i(t)= i0
(β−γ)e(β−γ)t

β−γ+βi0e(β−γ)t , (1.12)
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Figure 1.6. Evolution of fraction of infected people over time in the SIS model for R0 > 1.
i grows following a logistic curve but never saturates the whole population.
Instead, it reaches a limiting value 1− 1

R0
.

where i0 is the size of the seed of infection. If β< γ, i(t) would exponentially
decay, and the disease will eventually die out. β= γ will be the epidemic
threshold, which can also be derived with the basic reproduction number
arguments.

If β> γ, then this produces a logistic curve, similar to the SI model with a
delicate feature that the epidemic ends up in a stable state where a steady
fraction of the population, given by

i∞ = lim
t→∞ i(t)= β−γ

β
= 1− 1

R0
, (1.13)

will be infected. Fig. 1.6 presents the time evolution of the fraction of
infected people. Therefore, in the SIS model, the final size of the epidemic
would always be 1/R0 away from saturating the whole population. This
phenomenon is shown in Fig. 1.7 as it compares the dependence of the final
size of the epidemic on R0 in the SIS and SIR models, following Eq. 1.13
and Eq. 1.10, respectively.

1.2.5 The SEIR Model

In previous models, any exposed individual in the S compartment would
most probably transition to the I compartment. As elaborated in Sec. 1.2.2,
we often used “infected” and “infectious” interchangeably. This is because,
in our model’s context, an individual becomes contagious immediately
upon exposure. So, there is no distinction between being infected and
being infectious. Yet, when we examine diseases like COVID-19, we notice
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Figure 1.7. Comparison of the final epidemic size as a function of the basic reproduction
number in the SIS and SIR model. In the sub-critical regime, where R0 < 1,
the final epidemic size is zero for both cases. In both dynamics, the entire
population would never be infected; however, after the epidemic threshold,
R0 = 1, the SIR dynamics lead to a higher epidemic size.

that exposed individuals only begin to transmit the virus after a certain
duration known as the incubation period, tl, (sometimes referred to as
the latent or latency period) [197]. For a more detailed understanding
of infectious diseases, particularly when conceptualizing interventions,
it would be instructive to contemplate a time profile similar to what is
depicted in Fig. 1.8. To consider this latency, we can refine our model
by introducing an intermediary E compartment between S and I. This
modification results in the following transition sequence: S→ E→ I→ R.

Given that κ represents the average rate at which a latent individual
transitions to being infectious, we can adapt the SIR model. Consequently,
if the average fraction of individuals who have been exposed to the virus
but are not yet infectious is e, the governing equations for the SEIR model
can be expressed as:

ds
dt

=−βsi,

de
dt

=βsi−κe ,

di
dt

= κe−γi ,

dr
dt

= γi,

(1.14)

with s+ e+ i+ r = 1.
The SEIR model provides a more detailed insight into the spread of infec-
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Figure 1.8. Infected individuals can start infecting their neighbors after some period
known as the incubation period, tl , denoting the interval from when an
individual is first exposed to a pathogen to the onset of infectiousness or
symptoms. For numerous infectious diseases, this time-frame captures the
duration the pathogen needs to multiply sufficiently, eventually eliciting
symptoms in the affected individual.

tious diseases, particularly when there is a clear latency period between
exposure and the onset of infectiousness. However, within a reasonable
range of parameter values, it does not differ fundamentally in terms of
phenomenology compared to the SIR model.

1.2.6 The Next-generation Method and R0

In structured models of epidemic spread encompassing multiple infection
types, the computation of the basic reproduction number R0 involves av-
eraging the new infection rates across all types [56, 193, 40]. Consider
a scenario like HIV transmission in a strictly heterosexual demographic,
where infection types are distinctly categorized as male and female, with
asymmetries in transmission rates. Here, Mi j represents the expected
number of type i infections caused by an individual of type j in a wholly
susceptible type i population. If f and m are the expected secondary infec-
tions in females and males, respectively, we can summarize the number
of new infections after each type in a table M, celebrated as the next-
generation matrix, such that:

M=
(︄

0 f

m 0

)︄
. (1.15)

As a non-negative matrix, M inherently possesses a principal eigenvalue,
its spectral radius ρ(M), which epitomizes the total averaged number of
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new infections. Consequently, R0 = ρ(M)=
√︁

mf which is also the geometric
mean of the expected number of female and male secondary cases, encap-
sulating the epidemiological virulence of the pathogen in this structured
population model. If secondary infections were gender-independent, with
each individual capable of infecting R0 others, then the anti-diagonal ele-
ments of the matrix M, M12 and M21, would be identical to R0. As a result,
the spectral radius would be ρ(M)=

√︂
R2

0 = R0.

1.2.7 The Next-generation Matrix for Compartmental Models

As we already have seen, compartmental models in epidemiology usually
describe the dynamics of spreading using a set of coupled non-linear ordi-
nary differential equations (ODE). This system of ODEs is constructed to
have two fixed points: a disease-free equilibrium, an infection-free steady
state where the final epidemic size is zero, and an endemic equilibrium,
with a positive final epidemic size. The stability of these fixed points will
be determined with the control parameter R0, celebrated as the basic re-
production number in epidemic modeling. For a quick reminder, look at
Fig. 1.7, which shows such a phase transition in the SIS and SIR model.

For a general model, with n compartments, C1,C2, · · · ,Cn, the time evolution
of the faction of the population in each compartment can be written as

dci

dt
= f (c1, c2, · · · , cn), (1.16)

where f (·) is a non-linear combination of other compartment sizes, respec-
tively, and conventionally, C1 is set to be the susceptible compartment. R0

is a threshold for the stability of the disease-free equilibrium such that its
stability changes at R0 = 1.

To determine R0, we linearize the non-linear ODEs that describe the pro-
duction of new infections and transitions among the infected individuals
around the disease-free equilibrium. Epidemiological interpretation of this
linearization is that R0 encapsulates the potential outbreak initiated by an
infected individual in a naive population, assuming the change in the sus-
ceptible population is negligible during the initial spread. Mathematically,
R0 can be articulated as the product of the near-disease-free equilibrium
infection rate and the average infectious duration. It may be helpful to
revisit the derivation of the SIR model presented in Eq. 1.9.

As matrices can represent linear ODE systems, we can average the ex-
pected number of new infections over all possible infected types with the
next-generation matrix M [55]. This matrix is a linear positive operator
that maps the current infection generation to the subsequent one. It’s
essential to highlight that this matrix operator primarily targets the num-
ber of infections, excluding other compartments. Iteratively applying this
operator sheds light on the initial propagation of the infection across a
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diverse population. Setting the spectral radius (Perron root), or the largest
modulus of the eigenvalues of this operator to one, we can find the basic
reproduction number [196, 57, 37].

R0 = ρ(M). (1.17)

To clarify this framework, let’s go through a rather complicated exam-
ple. Assume a disease governed by SEIR dynamics similar to the one in
Sec. 1.2.5 but with this consideration that new susceptible people arrive
in that population with rate λ and any individual can leave it with rate
µ. It can be a model for studying COVID-19 in a region without travel
or mobility restrictions or in a closed population with a birth and death
rate γ and µ, respectively. In this scenario, the disease dynamics would be
updated as:

ds
dt

=−βsi−µs+λ,

de
dt

=βsi− (κ+µ)e ,

di
dt

= κe− (γ+µ)i ,

dr
dt

= γi−µr.

(1.18)

We can represent the time evolution of this system with vector x= (s, e, i, r)
where x j represents the fraction of population in the j-th component corre-
sponding to the SEIR order. Now, let F j(x) represent the rate of appearance
of new infections in compartment j, considering only the infections that
are newly emerging and excluding terms that depict the movement of
infectious individuals between compartments [56, 193, 40]. If V+

j is the
rate at which individuals move to compartment j through other means,
and V−

j is the rate of leaving the j-th compartment, then the difference
F j(x)−Vj(x) describes the rate of change, where Vj(x)=V−

j (x)−V+
j (x).

From here, we can formulate matrices of partial derivatives of F and V
such that

F jk =
∂ F j(xeq)
∂ xk

, and

Vjk =
∂Vj(xeq)
∂ xk

,

(1.19)

where xeq = (s0, e0, i0, r0) = (λ/µ,0,0,0) is the disease-free equilibrium. F
is a non-negative matrix that represents the infection rates near the
equilibrium, and V−1 represents the average duration of infectiousness. So,
we can write the next-generation matrix as M=FV−1 [57, 56, 55, 193, 40].
Every element of the next-generation matrix, M jk, gives the rate at which
infected individuals in the compartment j produces new infections in
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compartment k, times the average period an individual spends in a single
visit to compartment j. For this example, we can have:

F=
(︄

0 βs0

0 0

)︄
, and

V=
(︄
µ+κ 0

−κ γ+µ

)︄
,

(1.20)

and therefore, the basic reproduction number is calculated as

R0 = ρ(M)= s0
βκ

(µ+κ)(µ+γ)
. (1.21)

With the more challenging situations on the horizon, the next-generation
matrix will come in handy. We plan to apply it to diverse situations later
on.

1.2.8 Beyond the SIR Model

We can further extend the number of compartments to include more possi-
bilities; for example, one may extend the SEIR model to account for the
waning immunity. Waning immunity describes the gradual reduction of
our body’s protective response against disease over time, whether that
protection was gained through natural infection or vaccination. As this
immunity fades, there’s a possibility of becoming susceptible to the disease
again. So, the model can be extended to SEIRS. This phenomenon is
a significant factor in the development and scheduling of vaccines. For
certain diseases, periodic booster shots are administered to reinforce the
body’s immune response and ensure continued protection.

Compartmental models are the building blocks for epidemic modeling,
allowing us to capture specific events of interest. However, this approach
involves a balance between model complexity and its analytical tractability.
With each additional compartment introduced, the model becomes subject
to more mathematical constraints and wider implications. Consequently,
the more compartments a model contains, the more challenging it becomes
to rigorously follow and analyze its outcomes. This reflects the inherent
complexity of translating the multifaceted nature of disease spread into a
structured, mathematical framework. On the other hand, we eventually
want to apply our model to the real world, and when dealing with data, we
will face new challenges in inferring the model’s parameters. Therefore,
anyone who intends to work with more complex models should be concerned
that without having enough justifiable data and reasons, it would be hard
to shed light on any phenomenon. We are not the type of scientist who
doesn’t care about Occam’s razor [181]; If we have two theories that both
explain the observed facts, then we use the simplest until more evidence
comes along.
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SIR model shows how different factors influence the spread and eventual
containment of an epidemic, making it a suitable choice for our analysis of
the epidemic threshold and outbreak size, allowing for a comprehensive
understanding of epidemic characteristics [207, 50, 2]. While the SEIR
model and others offer more detail, especially regarding the latency period
of an infection, they do not significantly alter the fundamental dynamics
we aim to explore [150]. Therefore, SIR dynamics may sweep some epi-
demiological details under the rug, yet they can capture broader features
of disease dynamics. These dynamics strike an ideal balance between
realism and simplicity for epidemic problems we are interested in this
work. Therefore, we will continue to use to this model and its different
manifestations in the following chapters, leaving room for more complexity
from the contact network structure. After all, the SIR model gets the
phenomenology – macroscopic behaviors and trends – right, which is the
most essential modeling point for a physicist to begin with.

With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.

John von Neumann in conversation with
Enrico Fermi [65]

1.3 Herd Immunity and Failures of Simple Models

In any population, individuals can acquire immunity to specific infections
either through prior exposure to the pathogen, via prophylactic measures
like vaccination, or a combination of both [122]. For instance, in Fin-
land and other countries, an annual influenza vaccination initiative is
launched at the beginning of autumn. This vaccination offers protection
against influenza and shields from its secondary diseases, encompassing
ear infections, bronchitis, pneumonia, myocardial infarction, and cerebral
circulatory disorders [73]. The ultimate objective is to attain a population-
level immunity; if a significant fraction of the population is immunized, it
yields collective protection, often referred to as herd immunity. We should
keep in mind that within each population, certain people either cannot
receive the vaccine or opt not to for various reasons. Nevertheless, the prin-
ciple of herd immunity ensures protection for the broader population, even
when a disease has the potential to spread rapidly among the unvaccinated
or those previously immune.
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1.3.1 Herd Immunity after Vaccination

When vaccinating a population before the infection is introduced, we are
trying to modify the basic reproduction number of the upcoming disease
dynamics such that R0 < 1 and, consequently, keeping the disease in its sub-
critical regime. But how much of a population should we vaccinate to reach
herd immunity? Assume a population with no prior immunity that we can
protect πv fraction of them with perfect vaccines. What is the critical mass
we need to vaccinate? For policy-makers, it is of vital significance to always
estimate how many people they need to vaccinate as they have to assign
enough budget for their vaccine campaigns. Moreover, they must not only
consider the number of vaccines needed but also adapt their strategies.
This includes prioritizing high-incidence regions and simultaneously vacci-
nating different age groups to effectively mitigate the pandemic’s impact.
Such dynamic strategies, grounded in scientific modeling, can significantly
enhance the effectiveness of vaccine campaigns, especially in diverse and
changing pandemic scenarios. Ref [142] evaluates the efficiency of various
heuristic strategies for allocating COVID-19 vaccines, comparing them to
strategies derived from optimal control theory.

In the paradigmatic SIR model of infectious disease in a fully mixed pop-
ulation, herd immunity is reached when the fraction πv of the population
that is immune to the disease through vaccination or previous infection is
larger than

πc
v = 1− 1

R0
. (1.22)

The argument behind this is simple. According to the SIR model, every
infected person will, on average, infect R0 more people. If we vaccinate
πv fraction of people effectively, 1−πv fraction of people participate in
the disease dynamics. Therefore, if (1−πv)R0 < 1, then we reach herd
immunity, and we can find the herd immunity threshold as given by
Eq.1.22. Whenever we are referring to disease dynamics in the presence
of interventions or not at the early stages of the epidemic, we will use the
term effective reproduction number Re instead of the basic reproduction
number. In this case, Re = (1−πv)R0 and hence we need to keep Re below
one to prevent large outbreaks. Now, picture a scenario with R0 = 3. Then,
the herd immunity threshold would be roughly calculated as 1−1/3≃ 70%.

However, such a directive, though widespread, may oversimplify the com-
plexities at play. First and foremost, Eq. 1.22 draws the epidemic threshold
from the fully-mixed SIR model, which operates on the assumption that
all individuals in a population mix uniformly, with interactions being ran-
dom and uninfluenced by specific attributes, such as their vaccination
status. When it comes to the real world, this generalization can be limiting
as human–human interactions are far from being random. Moreover, in
practice, vaccines never get distributed equally in a population. Think
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Figure 1.9. Vaccination patterns within a population reveal non-random connections
between individuals. Social dynamics often lead to individuals interacting
more with those who with the same vaccination status rather than vaccines
being distributed uniformly at random across the population. Here, solid lines
depict connections within the community, while dashed lines represent links
between different communities.

of the correlation between an individual’s vaccination status and that of
the people they frequently interact with. For example, vaccinated people
are more likely to interact with other vaccinated people in the population
[31]. This propensity for like to associate with like is what we term as
homophily. Fig. 1.9 demonstrates a situation with vaccination homophily.
We use the term vaccination homophily to describe such patterns where
interactions are more common within similar vaccination groups than
between them. This phenomenon, rooted in the tendency of people with
similar socio-demographic and behavioral characteristics to interact, leads
to non-uniform vaccine adoption, as demonstrated in [38]. The interaction
patterns between vaccinated and non-vaccinated individuals, shaped by ho-
mophily, crucially affect disease transmission dynamics. A study in British
Columbia, Canada, involving 1 304 respondents, observed clear patterns of
vaccine homophily, revealing its substantial role in epidemic growth and in-
fection rates among different vaccination groups under varying conditions
of vaccine efficacy [7].

We will later see that in some settings, herd immunity can be easily not
achieved. As we show in Publication I, the presence of homophily consider-
ably increases the critical vaccine coverage needed for herd immunity, and
strong homophily can push the threshold entirely out of reach. Another
artifact of vaccination homophily in our model is that the epidemic size
monotonically increases as a function of homophily strength for a perfect
vaccine. We will discuss the consequence of vaccination homophily in
Sec. 3.7.

1.3.2 Herd Immunity through Natural Infection

As mentioned earlier, herd immunity can be gained through natural infec-
tion. For some diseases, recovered people stay immune to future infections.
It is worth noting that herd immunity after natural immunity due to previ-
ous exposure varies in strength and nature compared to vaccine immunity.
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a) b)

Figure 1.10. How natural immunity is localized in a population. (a) Nodes immunized
due to previous exposure(s) shown with color red. The dashed lines and the
red solid line indicate the interface between susceptible and immune nodes.
(b) The same number of randomly immunized nodes in the same population,
this time in blue, resulted in more interfaces.

Empirical observations in network science reveal that the number of
connections per individual, known as degrees, varies considerably across
a population [46, 36]. Such disparities in connectivity patterns highlight
a departure from a normal distribution, underscoring the heterogeneous
nature of real-world networks. When immunity is induced by natural
infection, population heterogeneity may lead to a lower herd immunity
threshold than expected under homogeneous mixing because the disease
spreads among highly interactive individuals, known as superspreaders, at
the early stage of the epidemic, resulting in more efficient immunization
of these influential hubs [35]. On the other hand, as we show in Publi-
cation II, in addition to degree heterogeneity, the spatial and structural
aspects of the population play a significant role here [22]. While an epi-
demic preferentially infects and removes people with more connections,
strengthening the herd immunity effect, it is contiguous and localized in
the population, weakening herd immunity. For a visual explanation, see
Fig. 1.10 The implications of such localization on herd immunity are yet to
be comprehensively explored.

Examining herd immunity within real-world scenarios, characterized
by structural nuances like communities, core-periphery constructs, and
household dynamics, can offer a deeper understanding of epidemic be-
havior in actual settings. Such endeavors can bridge the divide between
theoretical frameworks and their real-world applications, aiding in formu-
lating effective disease control and prevention strategies. We will delve
into these complications in this work. We will see how, and in what ways,
various interventions can be effective considering the networked structure
of human populations. Meanwhile, you might explore Ref. [202] to get
acquainted with the progress in epidemiological modeling, particularly
how it incorporates vaccination, individual behaviors, and social structures
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into understanding how diseases spread. This reference underscores the
transition from simple to more sophisticated models that leverage statisti-
cal physics and digital information, shedding light on the complexities of
disease transmission and the effects of vaccination. The research wraps
up with suggestions for future investigations, making it crucial reading for
those focused on disease modeling and public health initiatives.

After many efforts, when names, definitions, observations
and other sensory data are brought into contact and com-
pared in depth, one juxtaposed with another, in the course of
a scrutiny and an even-tempered but severe examination, at
the end a light suddenly comes on, for whatever problem –
our understanding, and a clarity of intelligence the effects of
which express the limits of human power.

Plato, Letter VIII [172]
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2. Structured Populations and Networks

Traditional models in epidemiology often do not incorporate the complexity
of social connections. As we saw, in the fully mixed populations of Chap-
ter 1, there were no constraints on the interactions between the individuals
beyond the characteristics of the disease’s spread. In the compartmental
models introduced in Sec. 1.2, an infected individual could infect any other
susceptible individual which is not a realistic assumption for any physicist
interested in modeling the propagation of a property (virus) in a physical
system (society).

To better understand disease dynamics in a society, we need to develop
realistic models for describing the population in which the epidemic is
unfolding. First, we want to respect the principle of locality in the sense
that people can only interact with their neighbors in some physical vicinity.
For airborne diseases, the primary infectious agents are often viruses,
bacteria, or fungi. These pathogens can be transmitted via activities such
as breathing, talking, coughing, sneezing, and other actions that generate
aerosol particles or droplets [4, 9, 127, 200, 85, 67]. Therefore, an airborne
transmission can only happen through sharing some medium. Moreover,
within a population of N people, the total number of connections between
the individuals, L, is usually around the same number as the population
size, N. In technical terms, we expect the population to be sparse such that
the L scales with N, not N2, for example, L =O (N) [132]. From this point
on, space graphs will be our primary focus for network analysis, except
where explicitly stated otherwise. Another essential feature we expect
is that the number of connections, k, varies from person to person, such
that the majority of people have almost the same number of connections,
except for a few people with very high k, known as hubs, or in the context
of spreading, superspreaders as they can infect much more people than a
typical individual.
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2.1 Random Graph Theory: Key Concepts and Definitions

With these minimum requirements, we can approximate a human popula-
tion with a random graph G such that every node v in the graph represents
an individual, and a link l between two people represents a connection or
a pair-wise interaction between them [194]. An undirected graph is a type
of graph where links lack direction, indicating bidirectional relationships.
Within this framework, a simple graph is a specific form of an undirected
graph characterized by two key constraints: it contains no loops (links
connecting a node to itself) and no parallel links (multiple links between
the same pair of vertices). These properties of a simple graph, with its
non-repeating and non-self-looping links, make it an ideal model for sce-
narios like social networks, where edges represent unique and mutual
connections between individuals.

The number of connections a node v has is called the degree of that node,
kv. The degree distribution pk and other structural aspects of a network
are typically referred to as network topology. For a graph with N nodes,
and L links, the identify below holds:

N∑︂

v=1

kv = 2L = N 〈k〉 , (2.1)

where 〈k〉 is average degree of the nodes,

〈k〉 =
∑︂

k

kpk . (2.2)

Over the past two decades, numerous random graph models have emerged
to represent human populations, primarily within the realm of Network
Science [151, 64]. These models are largely inspired by graph theory liter-
ature [58]. Consequently, we might use the terms "networks" and "graphs"
interchangeably moving forward.

Fig. 1.9 displays a network with two distinct groups of nodes, represent-
ing vaccinated and unvaccinated communities, along with their intercon-
nections. This network is termed a connected graph since there exists a
path between any two nodes. Within the graph, any sequence where each
successive pair of nodes is connected by a link is referred to as a walk.
When this walk avoids revisiting nodes, it’s termed a path. The length
of a walk is determined by counting the number of links in its sequence.
Furthermore, the distance between two nodes is defined as the length of
the shortest path connecting them. The longest shortest path in a network
is usually referred to as the diameter of a graph. The diameter represents
the largest distance between any two connected nodes.

Figure 2.1 shows a disconnected network, as you can find a pair of nodes
such that there is no path between them. Whenever there is no path
between two nodes, we say that they are infinitely far from each other. The
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Figure 2.1. A disconnected network comprising two components: the larger left subset
represents the giant component (GC) formed as a 6-clique, while the smaller
right subset illustrates a 4-clique.

communities of the network in Fig. 2.1 are completely disconnected. A
subgraph is a graph formed from a subset of the nodes and links of the
original graph. A connected subgraph that is not part of any larger con-
nected subgraph is called a component, and its size will be reported as the
number of nodes it includes. Components can be used to partition a graph.
We name the largest connected component of a graph as the giant compo-
nent, [151, 29]. Typically, real-world networks feature a dominant giant
component covering a significant portion of the entire network, wherein
the majority of nodes are part of this component. A giant component’s
significance is underscored when its size is proportional to the overall
network size. This scaling feature is integral to network infrastructure
functionality. For instance, the internet’s operational efficiency hinges on
this network characteristic, and the rapid spread of infectious diseases can
be attributed to the infection of the giant component in social networks.

In Fig. 2.1, we can see that each component has a very regular structure
as every node is connected to any other node. We call such a structure
a complete graph. Any subset of a graph that can be considered as an
induced subgraph forming a complete graph with c nodes is called a c-
clique. Cliques are very good candidates for representing groups in social
networks. We will use them in our modeling in Publication III.

In a complete graph, every pair of neighbors of a node u is connected,
making the graph maximally clustered. Generally, the amount of cluster-
ing, or transitivity, is typically measured by counting the number of closed
loops. If a path uvw forms a loop of size three, we say the path is closed
and nodes u, v, and w form a closed triad or triangle, as opposed to a triple
that misses one of the edges of the triangle [203]. To address the level of
transitivity of a network, we can define the clustering coefficient C of a
network [151] as the ratio of the number of triangles ∆ to the number of
connected triples Λ

C = 3∆
Λ

, (2.3)
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where factor 3 counts for the different ways we can count paths of length
two and three. This is a global property of a network, which can also be
calculated by averaging the local clustering coefficient of all the nodes.
We can define [204] a local clustering coefficient for a node u, Cu, as the
number of connected pairs of neighbors of u over the number of pairs of
neighbors of u. Cu represents the average probability that a pair of u’s
friends are friends of one another. Following Watts and Strogatz [204], we
can also define the clustering coefficient for the network as the average of
the local clustering coefficients for each node, CWS = 〈Cu〉.

We can represent the connections in a network through the adjacency
matrix A such that Auv = 1 when node u is connected to node v and Auv = 0
otherwise. So, the matrix representation of the graph in Fig. 2.1 would be:

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0

0

0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

where we have rearranged the rows and columns to show the block nature
of the adjacency matrix for a network that has two components. A is a
symmetric matrix, Auv = Avu as we are not imposing any direction on the
links in the network. The diagonal elements are also zero, Auu = 0, as the
network has no self-loop and it is a simple graph. A simple graph is a
graph with no self-loops, and it does not have more than one link between
any two nodes. The degree of node u can be calculated by summing over
the specific rows or columns of matrix A such that ku =∑︁v Auv. The matrix
representation of the graph serves as a gateway to the intriguing world of
algebra with its fascinating machinery.

With these terms defined and agreed upon, we can now explore random
graph models and what they offer.

2.2 Erdős–Rényi Networks

We begin with the simplest model that people usually refer to as the
random graph, known as the Erdős–Rényi (ER) model [151], and will go
through more detailed models later. Imagine we want to build a network
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G with N nodes such that L distinct pairs of them are uniformly chosen at
random and get connected. We will refer to this model as G(N,L) [68]. We
can do better and define the model as an ensemble of networks [151], such
that the model G(N,L) is the probability distribution P(G) over all simple
networks G with

P(G)= 1
(︁(N

2 )
L

)︁ , (2.5)

as we are choosing L links from the
(︁N

2

)︁
possibilities. When we analyze

property f of random graphs (like the number of connections each node
has or how many steps it takes to get from one node to another), we are
actually looking at the average of these properties across many different
graphs generated by the same random model [151]. Since each graph
produced by this process can be different, we focus on the average value
in the ensemble of these graphs rather than on the specifics of any single
graph. This approach helps us understand the general behavior of random
graphs as a whole. Therefore, any property of random graphs, f (G), is the
average property of the ensemble [151]. The term ensemble comes from
the community of physics. So, the ensemble average of a property f would
be written as:

〈 f 〉 =
∑︂

G

f (G)P(G) . (2.6)

For mathematical convenience in calculating the average values using
Eq. 2.6, it would be better to use a slightly different mathematical defi-
nition than the one with a fixed number of links L given by Eq. 2.5 [188].
Instead, we connect every uniformly selected pair of nodes at random with
independent probability p [151]. This will enable us to write Eq. 2.5 as

P(G)= pL(1− p)(
N
2 )−L. (2.7)

We name this model G(N, p). It is straightforward now to show [151] that
the expected number of links in such an ensemble is:

〈L〉 = p
(︃

N
2

)︃
≃ pN2. (2.8)

Moreover, the degree distribution, pk, of a random graph made with
G(N, p) model follows a binomial distribution [151] as:

pk =
(︃

N −1
2

)︃
pk(1− pk)N−1−k. (2.9)

For large enough network sizes, Eq. 2.9 can be approximated with a Pois-
son distribution. Therefore, in the thermodynamic limit, an ER network
possesses a Poisson degree distribution with mean 〈k〉, such that

pk = e−〈k〉
〈k〉k

k!
. (2.10)
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Due to the Poisson degree distribution, some scholars call this model
Poisson random graph [151].

We can use this equation and find the average degree 〈k〉 in a network
generated with this model as:

〈k〉 =
⟨︃

2L
N

⟩︃
= 2

N
〈L〉 = p(N −1)≃ pN, (2.11)

as the mean degree in a network with L links is 2L/N. The factor 2 is
responsible for the contribution of the link in the degree of two nodes.

2.2.1 Emergence of the Giant Component

An interesting property of ER networks is how their giant component
size changes as we vary p [29]. We will later in Sec. 2.8, Publication III
and IV discuss how the size of the giant component will be related to
evaluating the final outbreak size in an epidemic spreading on a network.
Now, assume the probability that a node is not in the giant component is
given by φ. This probability also represents the relative size of the giant
component as Σ= 1−φ. A node u belongs to the giant component if all of its
neighbors are connected to the giant component. Therefore, the probability
that node u is not connected to the giant component via a neighbor v is
1− p+ pφ [151]. Simply, 1− p accounts for the probability of not connecting
to node v, and pφ is the probability of the link between u and v existing
but not leading to the giant component. Therefore, the total probability
of not being connected to the giant component via any of the N −1 other
nodes in a large network can be written [151] as a self-consistent equation
below

φ= (1− p+ pφ)N−1. (2.12)

We can rearrange the terms in this equation, use an approximation in the
thermodynamic limit, and find that

φ= exp
(︁−〈k〉 (1−φ)

)︁
. (2.13)

Eliminating φ in favor of the size of the giant component gives us

Σ= 1− e−〈k〉Σ. (2.14)

There is no closed-form solution for this equation, but we know that Σ= 0 is
a stable solution when 〈k〉 < 1. In cases where the branching factor, 〈k〉, is
less than one, there is an exponential decay in this branching process [10],
leading to its swift termination. When 〈k〉 > 1, every node is, on average,
connected to more than one other node, leading to a chain of connections.
Therefore, we expect the size of the largest component to undergo a phase
transition from constant size to extensive size at 〈k〉 = 1. We can also show
that in the thermodynamic limit, only one component spans the entire
network in the super-critical regime [151].
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Figure 2.2. Phase transition in an ER network from disconnected to connected regime
with an extensive giant component.

Figure 2.2 captures such a phase transition. Following Eq. 2.11, this
transition happens at the critical writing probability pc = 1/N. Interestingly,
Eq. 2.14 has the same form as Eq. 1.6, and it manifests the same type of
phrase transitions as depicted in Fig. 1.7.

We will use similar but more detailed and complicated arguments in
all our publications to find the size of the giant component of a random
graph under different conditions. Alternatively, we can show that the
average size of the small components, any component other than the giant,
vanishes in the super-critical regime as the average degree or p increases.
The average size of a small component to which a randomly chosen node in
an ER network belongs can be derived [151] as:

σ= 1
1−〈k〉+〈k〉Σ . (2.15)

When 〈k〉 < 1 and there is no giant component, this equation leads to
(1−〈k〉)−1 which diverges at the critical point. In the super-critical regime
where 〈k〉 > 1, we must solve for Σ and then evaluate σ. Fig. 2.3 depicts the
behavior of the average size of small components in an ER network.

From the point of view of Critical Phenomena [183], we can think about
σ as the singular property at the phase transition point. σ’s behavior
is analogous to susceptibility χ in the field of critical phenomena, which
measures the response magnitude generated by a small external field
disturbance [63]. In our case, a small external field disturbance can be
adding a link uniformly at random in the network and measuring how the
average size of its giant component changes. Even adding a single link
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Figure 2.3. Average size of the small components in an ER network. The average size
σ of the component to which a randomly chosen node in a small component
belongs using Eq. 2.15.

can dramatically change the component average sizes at the critical point.
Using the ER model, if we generate an ensemble of random graphs and
look at the ensemble average of the giant component sizes, it will follow
Eq. 2.14, and the fluctuations around this mean value would diverge at
the critical point. Therefore, if we run a set of simulations and measure
the coefficient of variation of the giant component sizes, the ratio of the
standard deviation of giant component sizes to their ensemble average
would behave the same as σ around the critical point.

2.2.2 Shortcomings of ER Networks in Modeling Contact
Networks

We will examine in this section the limitations of the ER network in
accurately modeling contact networks.

An ER network G(N, p) comes with a single tuning parameter p. So,
any property of a random graph of this ensemble depends on the wiring
probability p. For example, the clustering coefficient of an ER network is

C = 〈k〉
N −1

= p , (2.16)

as the probability that any two nodes are neighbors is exactly the same
across the network [151]. We can traverse the ER networks without
spending much time going from one node to another. In technical words,
the diameter of ER networks grows logarithmically with the network’s size
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[28, 151], such that

D = ln N
ln〈k〉 . (2.17)

An intuitive way to understand the logarithmic growth of the diameter
is that since the clustering of an ER network is given by p, the network
can be approximated as a tree, a connected acyclic undirected graph that
branches with 〈k〉. Therefore, in D steps, it should statistically cover all
the N nodes such that N = 1+〈k〉+〈k〉2 +·· ·+〈k〉D. In the thermodynamic
limit and when 〈k〉 > 1, the dominant term in this series will be the last one,
so N ≃ 〈k〉D which leads to Eq. 2.17. This result always holds even though
we used a very crude approximation here. This tree-like assumption is a
useful trick that allows us to ignore loops when we are calculating some
network property locally [139].

ER networks come with a Poisson degree distribution, short (logarithmic)
diameter, and low clustering. It is an improvement upon the fully-mixed
population that is far from reality. By controlling p, we can always have
a sparse network with a giant component, which is a necessary condition
for the functionality of many networked systems. However, the implicit
low clustering of this model makes it unrealistic to model social networks
that exhibit transitivity, especially in the form of triadic closure, a ten-
dency for two individuals with a mutual acquaintance to become connected
themselves.

Sparse network candidates with high clustering can be the d-dimensional
lattices that Condensed Matter physicists have used for decades to describe
crystal structures. However, these networks usually possess so many sym-
metries or regularities that make them over-structured for us. Moreover,
the diameter of a d-dimensional lattice scales algebraically with the space
dimension as N1/d, while we prefer shortcuts and logarithmically scaled
diameter networks. Despite this, if we shuffle enough links in a lattice, we
can add some randomness to make some long-range connections, making
the diameter shorter while preserving the local structure to a reasonable
extent. A random network with high clustering in which its diameter scales
as ln N is called a small-world network. The celebrated Watts–Strogatz
model features these rewirings and produces a small-world random graph
[204].

The friendship paradox, first introduced by Feld (1991) [72], highlights a
common reality in social networks where your friends are likely to have
more friends than you. This concept is not only limited to the number of
friends; it also applies to many other characteristics where your friends,
on average, rank higher than you [66]. For example, your friends have
more enemies than you do on average. If we uniformly at random sample
nodes and count the links connected to them, we get an estimate over
the average degree of a network. Suppose we sample links uniformly at
random instead, follow them to one of their ends and look at the degree of
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that node excluding the link we just came from. In that case, we will get an
estimate over a network’s average excess degree 〈q〉 [151]. In mathematical
terms, the friendship paradox states that social networks have a larger
average excess degree than an average degree.

The Erdős–Rényi (ER) networks with Poisson degree distributions fall
short in regards to the “friendship paradox” primarily because of the
uniformity of their connectivity. This uniformity means that ER networks
lack the necessary variance in the number of connections to model the
friendship paradox effectively, which is more accurately represented in
networks with skewed degree distributions, such as scale-free networks
[98].

As we will see in the next section, given the degree distribution pk of a
network that locally looks like a tree, the average excess degree can be
derived from Eq. 2.23 in terms of the first and the second moments of the
degree distribution such that

〈q〉 =
⟨︁
k2
⟩︁

〈k〉 −1, (2.18)

where 〈km〉 =∑︁k km pk is the m-th moment of the degree distribution.
ER networks have a Poisson degree distribution, and consequently, the

variance and mean of degrees are equal. So,
⟨︁
k2
⟩︁= 〈k〉+〈k〉2. Substituting

this into Eq. 2.18 yields
〈q〉 = 〈k〉 . (2.19)

Therefore, in an ER network, your friends have the same number of friends
as you. Sometimes ER networks are referred to as homogeneous random
networks as degrees are highly centered around the mean value, and there
is no chance of strong degree heterogeneity.

We are interested in models with large but finite variances in their de-
grees to better approximate the social networks. In practice, the degree
distribution of networks should allow for the possibility of having nodes
with high degrees. In ER models, the tail of the distribution falls dramat-
ically and leaves no chance for the emergence of hubs. The next section
shows that the configuration model network allows us to create a network
with whatever distribution we want.

2.3 The Configuration Model

In this section, we explore the configuration model, an important tool
in network science for constructing random networks. Unlike the ER
model, the configuration model allows for more realistic representations
of social networks by using a prescribed degree sequence. Each network
created through this model is uniquely tailored based on its specific degree
sequence, which dictates the number of connections each node should have.
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This approach allows for flexible network structures, including uneven
distributions of connections, providing a more accurate reflection of social
network patterns than the homogenous ER model.

For a valid degree sequence represented by k1,k2, . . . ,kN , when each of the
N nodes has ku stubs, a configuration model network can be constructed
by connecting pairs of stubs uniformly at random [75]. In a configuration
model network, the total probability of a connection between a pair of
nodes u and v will be

puv = kukv

2L
, (2.20)

where 2L =∑︁u ku [151]. In the configuration model, while self-loops or
multi-links might occur, their number becomes negligible in the thermody-
namic limit where N →∞, especially when dealing with a degree sequence
that ensures a finite average degree. If the variance of the degree sequence
is finite, the infinitely large network that emerges from this model tends
to be a simple graph without self-loops or multiple links between the same
nodes. We can show the expected density of self-loops that may pop up in
the network vanishes as N →∞ since

1
N

∑︂

u
puu = 1

N

∑︂

u

ku(ku −1)
4L

= 1
N

⟨︁
k2
⟩︁−〈k〉

2〈k〉 . (2.21)

The adjustment for puu is because the probability of a self-loop from node
u to itself is ku(ku −1)/4L.

The expected number of common neighbors of node u and v, as a note-
worthy characteristic, can be given as

nuv = puv

⟨︁
k2
⟩︁−〈k〉
〈k〉 = puv 〈q〉 . (2.22)

The last identity follows Eq. 2.18 for the average excess degree. Note that
the excess degree distribution plays an important role in many calculations
and can be derived as

Qk =
1
〈k〉 (k+1)pk, (2.23)

where 〈k〉 is averaged over the degree distribution pk [151].
We can now calculate the clustering coefficient [151] in a configuration

network model as

C =
∞∑︂

ku,kv=0

QkuQkv puv = 1
N

[︁⟨︁
k2
⟩︁−〈k〉]︁2
〈k〉3 . (2.24)

Configuration model networks, the same as ER networks, have vanishingly
small clustering in the thermodynamic limit, making them locally tree-like
networks.

There are different versions of the configuration model with fewer con-
straints [194]. In various contexts, the term soft configuration model
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is used to denote variants of the configuration model with relaxed con-
straints [157, 195]. For example, the Chung-Lu model [44, 45] is a soft
configuration model which, instead of building a graph that satisfies a
specific degree sequence, generates a random graph with given expected
degrees k̄1, k̄2, . . . , k̄N . The Chung-Lu model is prized for its ability to repli-
cate complex network structures found in the real world, thanks to its
accommodating of arbitrary degree distributions. It turns out that the
link probability between node u and v in this variant will be the same as
Eq. 2.20 with the expected values replaced. From now on, whenever we
say a configuration model, we mean a soft version, specifically the Chung
and Lu variant [44].

If we sample the expected degrees from a Poisson distribution, we will
recover an ER network [61]. For more realistic modeling, specifically in
modeling the contact network for disease spreading, we can use a negative
binomial distribution as we can control its variance and produce a heavier
tail [154]. This flexibility allows for generating random networks with
more degree heterogeneity.

2.3.1 Existence of the Giant Component

The configuration model has a giant component if and only if 〈q〉 > 1 [151]
or in terms of moments of the degree distribution, if and only if

⟨︁
k2⟩︁−〈k〉 > 0. (2.25)

This is known as the Molloy and Reed condition [143, 103]. When there is
a giant component, starting from a typical node in a configuration model
network, we can expect to have Nd d-order neighbors [151], given as

Nd = 〈q〉d−1 〈k〉 . (2.26)

2.3.2 Size of Giant Component and Generating Functions

We can find the size of the giant component, if any, similar to how we
argued for the ER model in Sec. 2.2.1 [151]. We begin from some node and
follow one of its neighbors. Assume the probability that the neighbor is not
in the giant component is φ. A node does not belong to the giant component
when its k neighbors are not, which happens with probability φk. So, the
size of the giant component would be given by

Σ= 1−⟨︁φk⟩︁ , (2.27)

where we have averaged φk over the entire network with degree distri-
bution pk. It is common to name

⟨︁
φk⟩︁ as g0(φ) where the function g0 is

called the probability generating function for the probability distribution
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pk [151];
g0(φ)=

∑︂

k

pkφ
k = ⟨︁φk⟩︁ . (2.28)

The probability φ was introduced for a neighbor node rather than a ran-
domly chosen node. Therefore, its degree follows the excess degree distri-
bution. We can write a self-consistent equation for φ as

φ= ⟨︁φk⟩︁
Q , (2.29)

such that
g1(φ)=

∑︂

k

Qkφ
k = ⟨︁φk⟩︁

Q , (2.30)

where we have averaged φk over the excess degree distribution Qk and g1

is the probability generating function of Q. Given the degree distribution
pk of a network, we can calculate g0 and consequently, using Eq. 2.23, g1

can be written as
g1(φ)= 1

〈k〉 g′
0(φ), (2.31)

where g′
0 is the first derivative of g0 with respect to its argument [151].

When evaluated at 1, g′
0 would give the average degree

g′
0(1)= 〈k〉 , (2.32)

leading to

g1(φ)= g′
0(φ)

g′
0(1)

. (2.33)

When there is no giant component, the average size of the component a
node belongs to would be specified entirely by the first and second moments
of the degree distribution. With some algebra, we can show that

σ= 1+ g′
0(1)

1− g′
1(1)

= 1+ 〈k〉2
2〈k〉+⟨︁k2

⟩︁ (2.34)

where we have used Eq. 2.18 for the evaluating g′
1(1). The good news is

that the expected small component size, unlike the giant component size,
can be evaluated without calculating any generating functions.

The diameter of a configuration model network would also scale logarith-
mically with the size of the network [44] such that

D = ln N
ln〈q〉 +constant. (2.35)

2.4 Random Graph Models For Networks with Group Structure

Random graph models for networks with groups play a pivotal role in mod-
eling epidemic diseases. These models effectively capture the complexity of
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social interactions and the dynamics of disease spread within and between
different groups in a population. By incorporating group structures, these
models offer a more nuanced understanding of how diseases propagate
through networks, accounting for variables like contact patterns, group
sizes, and connectivity. This enhanced realism is crucial for predicting
outbreaks, assessing the impact of interventions, and informing public
health policies. In the following sections, we will delve into specific models
that provide us with detailed group structures, further elucidating their
significance in epidemiological modeling and disease control strategies.

2.4.1 Bipartite Network

Most social networks contain groups of densely connected subgraphs. One
way to model them is to use a bipartite network model, also known as a two-
mode or bi-modal network, which represents a type of graph where nodes
are divided into two distinct sets, and links only exist between nodes of
different sets. In other words, there are no links between nodes within the
same set. This structure is useful in modeling systems where relationships
occur only between distinct categories. Common examples of bipartite net-
works include author-paper relationships in academic databases (where
authors are in one set and papers in another, and links indicate author-
ship) or customer-product purchase histories in market research (where
customers are in one set, products in another, and links indicate a pur-
chase). The bipartite nature of these networks offers unique analytical
challenges and opportunities, distinct from traditional one-mode networks.
We will utilize a refined version of the bipartite network model as outlined
in Publication III. This model distinctively categorizes one set of nodes as
individuals and another set as the groups to which these individuals are
affiliated. By projecting this network model, we aim to intricately map the
complex interactions between individuals and their respective groups.

2.4.2 Random Clique Networks

In studying epidemic processes, cliques are commonly used to represent
social groups within contact networks. Within social networks, c-cliques
are complete subgraphs indicating a group of c people who are all intercon-
nected and can potentially infect one another. These structures have been
identified in real-world social networks, challenging the standard tree-
like assumption often applied in epidemic studies [192, 166, 209]. These
networks can be constructed by dividing a graph into two sections: node
groups and clique groups. Since it’s a bipartite structure, connections only
form between these groups. In the thermodynamic limit, the unipartite
projection of this graph forms a contact network with a negligible number
of self-loops or multi-links. See [205, 29] for further details on these net-
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Figure 2.4. Schematic of 6-regular c-clique networks from Publication III. Panels (a-c)
illustrate the neighborhoods of a (highlighted) node within networks of 4, 3,
and 2-cliques, respectively. These configurations recur around each node in
the random network with cliques. Panel (d) depicts a segment of the broader
neighborhood in a 3-clique network, highlighting an expanded area around
the panel. It’s notable that each node possesses a degree of 4, with only a
portion of the node connections being displayed. Such a pattern is typical in a
large clique network.

work structures. Consequently, every c-clique adds c−1 links to a node’s
degree. As Fig. 2.4 shows, in cases where c = 2, the model reduces to a
random regular graph. A regular graph is a graph where each node has
the same number of neighbors. We will use these types of structures in
Publication III.

2.4.3 Stochastic Block Models

As we transition from examining small, closely-knit groups in network mod-
els, our focus shifts to encompassing substantially larger groups that cover
a significant portion of the entire network [108]. This shift in scale necessi-
tates a more versatile modeling approach, which is where the Stochastic
Block Model (SBM) [95, 125] becomes particularly valuable. Unlike smaller
groups that are typically densely connected, larger blocks in a network
can exhibit a broader range of connectivity patterns. The SBM’s flexibility
in modeling these large, complex structures makes it an ideal choice, not
only for our study but also for a wide array of applications. The SBM has
demonstrated its versatility in various fields, including federated learn-
ing [104, 180], graph clustering [125], social network analysis [94], and
community detection [1, 160].

Now, consider Eq. 2.4, which presents an adjacency matrix for a network
comprising two distinct communities, as shown in Fig. 2.1. A community
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in this context refers to a group of nodes that share similar connection
patterns with other groups. The structure of matrix Eq. 2.4 is meticulously
arranged to accentuate the block configuration of the graph, thereby illumi-
nating regions of high density (indicative of strong intra-community ties)
and areas of sparsity (reflecting weaker or non-existent inter-community
connections).

In general, when constructing a network with B communities using the
SBM, nodes are allocated into blocks such that bu ∈ {1, . . . ,B} signifies the
community or block to which node u is assigned. This model allows for
the application of probabilistic rules governing the likelihood of connec-
tions both within and across these communities. For instance, in the
stark scenario depicted by Fig. 2.1, nodes within a single community are
completely interconnected with a probability of p = 1, while there are no
inter-community links. Conversely, in scenarios like the one illustrated in
Fig. 1.9, there is a non-zero probability for the formation of links between
different communities, demonstrating the SBM’s adaptability to various
network configurations.

Quantitatively, the number of links between two blocks r and s (or within
a single block) can be expressed as:

ers(G)=
∑︂

u<v
Auvδbu,rδbv,s, (2.36)

where Auv represents the adjacency matrix, and δ•,• is the Kronecker delta
function ensuring that nodes u and v belong to blocks r and s respectively.
The ensemble of graphs generated by the SBM is, in essence, the max-
imum entropy ensemble [157], where the expected values of these link
numbers conform to specified values, allowing for a broad range of network
structures.

2.4.4 Networks with Homophily

Figure 1.9 illustrates the phenomenon of homophily regarding vaccination
status within a community. Let us now discuss a particular version of
block models that emphasizes the higher probability of connections within
two groups than between them. This idea is, of course, consistent with the
Stochastic Block Model (SBM) framework.

Consider a population where a fraction πv is vaccinated, and the remain-
der, πu = 1−πv, is not. This scenario examines the propensity of individuals
with the same vaccination status to connect. Specifically, πvv denotes
the probability of a vaccinated individual connecting with another vacci-
nated person, while πuu represents the same for unvaccinated individuals.
Crucially, these probabilities are not independent but are influenced by
the overall vaccination rate, πv. To model this network, we need only
establish πvv, as the remaining probabilities can be inferred: πvu = 1−πvv,
πuv = πv

1−πv
(1−πvv), and πuu = 1−πv−πv(1−πvv)

1−πv
. The second equation, in par-
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ticular, balances the links from vaccinated to unvaccinated individuals,
conforming to πvNπvu〈k〉 = (1−πv)Nπuv〈k〉. For more details, see Publication
I and Publication IV.

Using these connection probabilities, we can use the Coleman homophily
index [49], originally proposed for social network analysis and defined by

h = πvv −πv

1−πv
= πuu −πu

1−πu
, (2.37)

to determine the level of homophily in the network. This index provides a
consistent measure of homophily across varying πv values. The index has
three key properties: it increases with both πvv and πuu, is symmetrical for
vaccinated and unvaccinated groups, and ranges from 0 (no homophily) to
1 (complete homophily). Negative values suggest heterophilic networks
based on vaccination status. Note that the connection probabilities πvv =
πv +πuh and πuu = πu +πvh must be positive, and therefore, the Coleman
homophily index is bounded from below as h ≥max(−πv/πu,−πu/πv). We will
use networks with homophily in Publication I and Publication IV.

2.5 Spatial Random Graphs

Spatial networks are crucial for modeling disease spread because they
incorporate the essential element of space into network structures [21, 22].
In real-world scenarios, like transportation, social contact, and mobility
networks, space plays a significant role in influencing how nodes (individu-
als or locations) interact. The cost associated with the length of connections
(links) in these networks directly impacts their topological structure. This
spatial dimension is critical in understanding how diseases propagate, as
it affects various dynamics like contact frequency, mobility patterns, and
connectivity, all of which are key factors in the spread of diseases. Under-
standing the spatial constraints of networks, therefore, provides valuable
insights into disease transmission and informs effective strategies for man-
aging epidemics [87, 74]. The most basic forms of spatial networks can be
exemplified by lattices or random geometric graphs. In these structures,
nodes are uniformly and randomly placed across a two-dimensional area,
and connections are formed between nodes if their Euclidean distance is
less than a specified radius.

2.5.1 Random Geometric Graphs

Random Geometric Graphs (RGGs) represent a specific spatial graph type
wherein nodes are randomly distributed within a defined space [162].
Connections between nodes are established based on spatial proximity,
specifically if they fall within a predetermined distance or radius from
each other. This model is particularly adept at representing networks
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where spatial closeness dictates connectivity [6]. Unlike certain networks
from the configuration model family, such as random regular graphs and
Erdős–Rényi (ER) networks, which lack a defined spatial organization,
RGGs, similar to lattices, exhibit a more systematic arrangement. These
graphs are characterized by a higher degree of spatial embeddedness, re-
flecting the inherent spatiality in their structure. This contrast highlights
the diverse ways networks can be structured, ranging from completely
random to highly spatially oriented configurations.

2.6 Lattices

Lattices are a type of spatial network where nodes are arranged in a regu-
lar, repeating pattern, often resembling a grid. Unlike random geometric
graphs where nodes are placed randomly, lattices have a structured and
predictable layout. Each node in a lattice is typically connected to its
nearest neighbors based on the lattice structure, which can vary (e.g.,
square, hexagonal, triangular) [5]. Lattices are used in various scientific
fields, including physics, for modeling phenomena in a structured yet sim-
plified environment [23]. They are particularly useful in studying spatial
relationships and processes in a controlled, orderly framework.

2.7 Temporal Networks

So far, our discussion has centered on complex networks that do not change
or evolve over time. We use temporal frameworks in Publication V, VI
and Ref. [177]. In other publications, we use static complex networks.
Static network models struggle to encapsulate time-dependent properties
observed in many systems [97, 144, 110, 71, 33, 131, 170, 11, 178]. In
models like the ER network, a node’s number of neighbors might differ
from other nodes, but it stays constant over time. To accurately represent
the dynamics of/on social networks, we should take into account not just
topological heterogeneities but also those that occur over time. Empirical
observations challenge the common assumption that entities in static net-
work models interact consistently. Many real-world systems, ranging from
human behavior to natural phenomena, display bursts of high activity
followed by inactivity periods [109, 18, 43, 82, 52, 25, 16, 51]. To address
these limitations, time-dependent systems have been depicted as layers of
static networks, sometimes termed snapshot graph sequences, each captur-
ing behavior within a specific time window [117, 100, 77, 32, 186, 15, 210].
The core concept of temporal networks enhances static models by retaining
temporal information about network interactions. In these models, an
event signifies a single interaction instance between two nodes. These
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interactions can be instantaneous or can span a duration. Figure 2.5(a)
illustrates the temporal network using a time-line visualization. In this
representation, individual nodes are depicted as horizontal dashed lines
and events as vertical line segments joining two interacting nodes.

A temporal network is mathematically represented as G = (V ,E ,T ),
where V denotes the set of nodes, E the set of events, and T the time win-
dow. Each event e in E is defined as e = (u,v, tstart, tend), with tstart and tend
indicating the start and end times of an interaction. The network encapsu-
lates dynamic interactions between entities over time. Temporal networks
can be further conceptualized as an event graph D = (E ,ED ,∆t(e, e′)), where
nodes are events and edges represent time differences between events. Ad-
jacent events share a common node and are sequenced in time. Therefore,
the event graph [137, 138, 118, 179, 101] encapsulates the full set of paths
in the network, making it easier to study reachability and other properties.

In temporal networks, unlike static ones, connections are not inherently
transitive. For instance, if node i connects to j, and j to k, this doesn’t
automatically ensure an effect from i can reach k unless the timings
of these connections align sequentially. Temporal adjacency is defined
where events e and e′ are adjacent if v∩u′ ̸= ∅ and t′start > tend, allowing
the formation of time-respecting paths. This dependency on time and
node specifics leads to the concept of temporal clusters or components
distinct from those in static networks. Temporal network reachability
requires nuanced analytical approaches. The concept of limited waiting-
time reachability, or restless reachability, adds temporal constraints to
paths, defining δt-adjacency based on a maximum time δt between events.
This approach models various processes, including the SIS process, in a
temporal network framework. For more details, see Publication V, VI, and
Ref. [177].

The event graph representation encapsulates all time-respecting paths
[121]. This approach facilitates the application of static network analysis
methods to the structural study of temporal networks. Every path in the
event graph, aligning with a time-respecting path in the temporal network,
reveals the range of vertices and times they are accessible from a starting
event, considering temporal adjacency. Therefore, the out-components
in the event graph represent the spread or reachability from an initial
event. Conversely, the in-components illustrate which events can reach a
particular vertex, essentially mapping the influence or reachability to that
event. This approach allows for a detailed understanding of how effects
propagate and interact within a temporal network.

It is worth noting that to determine the out-component of a single event
node, a straightforward breadth-first search (BFS) suffices. However, the
task becomes more computationally expensive if we aim to grasp broader
reachability patterns in temporal networks, such as how the reachability
cluster evolves on average across multiple start points. One could sample
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Figure 2.5. Representation of a temporal network and two limited-waiting-time
spreading processes on that network, from Publication VI. The network
is built using a static path graph, which is shown vertically to the left, and
each link has activation times determined by the Poisson process. In part
(a), the temporal network is depicted through a time-line chart. Here, every
horizontal dashed line stands for an individual node, while vertical solid line
segments indicate immediate interactions or events between two nodes at a
given moment. Two specific spreading processes with limited waiting times,
initiated from two separate events, are highlighted using different colors.
These colored horizontal segments indicate the duration of infectivity for each
node, and the highlighted events mark potential paths of transmission.
(b) The event graph of the temporal network is illustrated as a directed acyclic
graph. In this representation, every event from the original network becomes
a node in the event graph. Two nodes are linked if their corresponding events
are next to each other. (c) This event graph can be simplified by removing
unnecessary feed-forward loops, all the while preserving the characteristics
of the spreading process. The Cluster volume, which refers to the distinct
count of infected nodes in the temporal network, and the Cluster lifetime,
representing the duration from the beginning to the end of the process, are
determinable from the properties of the event graph. Meanwhile, the Cluster
mass — the cumulative node-hours of infectivity, equivalent to the total of
colored horizontal lines seen in panel (a) — can be gauged in the event graph
by counting the distinct events in the infected cluster.
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a selection of starting events and execute a BFS for each, but this method
grows costly in terms of computational resources. This is mainly because
each BFS demands operations on the order of O(|ED |), where ED represents
the set of links or adjacency relationships within the event graph. Ref. [14]
introduces a method that efficiently computes estimates of sizes of in-
or out-components in temporal networks. This method has far-reaching
implications, as we show in Publication V and VI.

A stone is a prototypical “thing”: we can ask our-
selves where it will be tomorrow. Conversely, a kiss
is an “event.” It makes no sense to ask where the
kiss will be tomorrow. The world is made up of
networks of kisses, not of stones.

Carlo Rovelli, The Order of Time

2.8 Percolation Theory

Percolation theory is a mathematical framework used in statistical physics,
materials science, and network theory to study the behavior of connected
components in a random graph [173]. It provides a way to analyze how
various properties of a system change as the number of connections or
occupied sites increases. The theory is particularly famous for describing
phase transitions, which are sudden changes in the system’s properties.

Percolation theory is also useful in understanding disease propagation in
social networks, offering analytical tools that will be specifically utilized in
Publication III and IV. This theory emphasizes the need to consider both
the structural aspects of networks and the nuances of individual disease
transmission behaviors. Our development of this framework, as detailed
in Publication V, VI, and Ref. [177], extends its application to temporal
networks. We map spreading phenomena onto directed percolation prob-
lems, thereby enhancing our understanding of how diseases proliferate
over time in complex network structures.

2.8.1 Bond Percolation

In Sec. 2.2, we introduced the ER network G(N, p) where each pair of nodes
where connected with probability p. That model results in a network that
undergoes a phase transition, as illustrated by Fig. 2.2, from a disconnected
to a connected system such that if p > pc, the giant component of the
network spans a non-zero fraction of all nodes. The wiring probability p
stochastically connects any pair of nodes and acts as the control parameter
here and adjusts the network’s giant component size, the order parameter
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Figure 2.6. Simulation results for the percolation phase transition in three networks
(each of size 6× 105 and average degree 6). The solid line represents the
Erdős-Rényi (ER) network, with a critical probability (pc = 1/6), as discussed
in Sec. 2.2.1. The dash-dotted line illustrates a configuration model network
with a heavy-tail degree distribution (pk ∼ k−3.01, see Sec. 2.3), which is more
robust against link removal. The critical probability for this network can
be derived using Eq. 2.38. This network exhibits more degree heterogeneity
compared to an ER network and demonstrates lower critical p. The dashed
line shows a Watts–Strogatz small-world network with a rewiring probability
of 0.1 (see Sec. 2.2.2), which has a higher percolation threshold than the ER
network. Due to its high clustering coefficient, the standard approach for
calculating the epidemic threshold (Eq. 2.38) is not applicable for this network.

of the problem. We can do the opposite: Begin with any graph G, remove
any link uniformly at random with probability p (or leave the link occupied
with probability 1− p), and check how the giant component size varies as a
consequence of link removal. Fig. 2.6 shows what happens to the size of
the giant component of three different networks as we remove their links
uniform at random with p. As we can see, different networks undergo
different changes depending on their topology. When the giant component
emerges by including a non-zero fraction of the nodes in the network, we
say the network has percolated.

In the realm of physics, this approach is known as bond-percolation,
where only a subset of the system’s original bonds (or links) remain ac-
tive [47, 128]. Most connected graphs experience a phase transition at
a particular probability, pc, which is referred to as the bond percolation
threshold. In the case of tree-like networks, this threshold is determined
by observing how the percolation probability p affects the average excess
degree, given that the transition occurs when 〈q〉 = 1. It’s worth noting
that various properties, such as the size of the giant component, small
component size distribution, network percolation characteristics, and more,
are all intrinsically linked to this tree-like property.
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For configuration model networks, we can find the size of the giant
component or the percolation threshold using the same arguments we
followed in Sec. 2.3.2 such that

pc = 1
g′

1(1)
= 〈k〉⟨︁

k2
⟩︁−〈k〉 , (2.38)

where g1 is the generating function of the excess degree distribution of the
configuration model network.

2.8.2 Site Percolation

If instead of removing or keeping the links, we remove each node and its
connecting links from the network, a process known as site-percolation
[168], we will again go through a phase transition but this time through a
different mechanism such that the threshold happens at different values.
Vaccination can be modeled as a site-percolation process since by vaccinat-
ing people, we remove them from the transmission network [202, 129].

2.8.3 Percolation as a Critical Phenomenon

Percolation phase transitions are a fascinating area of study in statistical
physics, characterized by the emergence of a giant component that connects
a significant portion of a system [128, 148]. This transition is governed
by scaling laws and critical exponents [81], which offer a quantitative
framework for understanding these phenomena. These laws describe
the behavior of various physical quantities as the system approaches the
critical threshold of percolation, denoted as pc. Near the critical point,
properties of the system exhibit power-law scaling, indicating that they
can be expressed as a power of the distance from pc. Critical exponents are
key to understanding these scaling laws [81]. They describe how certain
properties of the system change as the percolation threshold is approached
[62]. Accordingly, the size of the giant component and the average size of
small components scale with their specific critical exponents at the critical
point [63]. This can be expressed as:

σ∼ |p− pc|−γ

The symbol ∼ denotes that the left-hand side scales as a power of the right-
hand side, and γ is the critical exponent that describes how the average
size of components diverges as the percolation threshold pc is approached.
Another singular property at the critical point is the correlation length.
The correlation length ξ indicates the scale of spatial correlations in a
system, say, the typical size of components, and its divergence signifies the
onset of long-range order. The scaling of the correlation length can also be
expressed as follows:

ξ∼ |p− pc|−ν
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where ν is the critical exponent associated with the correlation length.
These scaling laws and critical exponents are not just mathematical

curiosities; they reveal the underlying universality of phase transitions
[81]. A universality class in the context of statistical physics and criti-
cal phenomena is a classification that groups various physical systems
and models based on their similar critical behavior, particularly as they
approach a phase transition. A fridge magnet and boiling water exhibit
similar behaviors near their critical temperature, despite their differences
[81]. This concept suggests that different systems, even with diverse micro-
scopic structures or dynamics, can exhibit identical large-scale statistical
behavior near their critical points. Besides, it highlights the profound
interconnectedness of physical and mathematical worlds, where the same
fundamental rules can govern both material states and abstract structures.

Taking percolation as an example, systems within the same universality
class will share critical exponents that dictate the scaling behavior of key
properties like component sizes or correlation lengths near the percolation
threshold. This remarkable similarity means that by studying the critical
behavior of one system in a given universality class, we can infer the
behavior of other systems in the same class despite their microscopic
differences. This principle of universality is crucial in simplifying and
unifying our understanding of complex phenomena across a wide range of
disciplines, from condensed matter physics to network theory. Ref. [39, 86,
187, 63] provide comprehensive insights into the mathematical foundations
and physical interpretations of scaling laws and critical exponents in
percolation theory.

2.8.4 Directed Percolation

Following the exploration of percolation in various network topologies,
as discussed in the context of the ER network and configuration model
networks, we now turn our attention to a specific type of percolation process
known as directed percolation. This process is a cornerstone example
of continuous, non-equilibrium phase transitions, distinct from isotropic
phase transitions due to its imposition of a preferred direction in one of
the system’s dimensions [90, 91].

Consider the process of brewing espresso as an illustrative example of a
percolation process. In this scenario, the network is the finely ground coffee
held within a portafilter, a porous medium. The percolation occurs when
hot or steamed water is forced through the coffee grounds, extracting the
coffee from the bottom. Unlike isotropic percolation processes, the liquid in
espresso-making travels predominantly in a downward direction, guided
by the combined forces of the espresso machine’s pressure and gravity. This
directional flow of water through the coffee grounds exemplifies a directed
percolation process, where the flow is not random or isotropic but instead
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follows a specific, predetermined path. This directional bias in the perco-
lation process significantly alters the dynamics of the system, disrupting
the usual symmetry between the horizontal and other spatial dimensions.
This phenomenon, where the percolation process is guided in a specific
direction, can be likened to the concept of directed percolation in physics
[90], as opposed to isotropic percolation, where the fluid or the agents
would move uniformly in all directions. This directed percolation process,
as seen in espresso brewing, is a metaphoric analogy to the theoretical
models of directed percolation discussed in non-equilibrium physics. It
provides a tangible example of how directional constraints in a percolation
process can fundamentally change the behavior and outcome of the system.

Directed percolation can also be conceptualized as a d+1-dimensional sys-
tem with one dimension having a preferred direction, time evolution, given
the unidirectional nature of time [91, 90]. In this framework, the evolution
of the system in discrete-time directed bond percolation is governed by two
simple rules: 1) each occupied node leads to the occupation of neighboring
nodes, and 2) any occupation not reinforced in a turn results in the node
becoming unoccupied. This dynamic leads to three distinct phenomena:
death (or extinction at dead-ends), multiplication (where an occupied node
infects a neighboring one), and coalescence (where two occupied nodes
interact, leaving only one occupied).

Similar to the isotropic percolation discussed earlier, the evolution of
directed percolation systems is characterized by changes in order parame-
ters and characteristic quantities in response to variations in the control
parameter p, the probability of link existence. At a critical threshold p = pc,
the system undergoes a phase transition. Below this threshold, percolating
clusters starting from a single node are finite in both lifetime and size.
As the threshold is approached, these clusters grow, and beyond it, they
remain indefinitely active in an infinite system [90, 91]. This behavior is
quantified through various parameters such as the probability of survival
P(t), mean cluster mass M, volume V , and lifetime T, each scaling with
different critical exponents.

In Publication V and VI, we will discuss in more detail that in scenarios
where the spreading process begins from all nodes at t = 0, the system
remains active for a finite duration at τ< 0 but indefinitely for τ> 0. This
leads to the definition of occupation density ρ(t) and stationary density
ρstat, which scale differently based on the system’s state relative to the
critical threshold. The influence of an external field on ρstat is particularly
noteworthy near the critical threshold, where even minor changes can
significantly affect the system, as indicated by the susceptibility χ.

While these quantities have distinct critical exponents, not all are inde-
pendent. For example, the static occupation density ρstat and the ultimate
probability of survival P∞ are closely related under a time-reversal trans-
formation, leading to the equality of certain critical exponents [90].
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Despite its theoretical elegance and extensive study, practical observa-
tions of directed percolation systems in real-world scenarios were elusive
until recently. This gap is partly due to the difficulty in replicating certain
features of classical directed percolation systems, such as a non-fluctuating
absorbing phase, in natural settings [90]. However, recent experimental
breakthroughs have begun to bridge this gap, demonstrating the applica-
bility of directed percolation concepts in various fields ranging from star
formation to biological evolution [190, 175, 126]. Ref. [177] revolves around
analyzing the temporal evolution of spreading dynamics on networks. We
contribute to forming a concrete connection between temporal network
reachability and percolation theory in Publication V and VI. We show that
limited-waiting-time reachability, a feature of constrained connectivity in
temporal networks, undergoes a directed percolation phase transition. This
suggests that spreading behaviors on these networks can be analyzed using
directed percolation universality class, a finding consistent across various
models and actual temporal networks. Building on this, we aim to connect
the reachability in temporal networks to epidemic spreading similarly as
connectivity in static networks is related to late-stage disease-spreading
results [150, 114].
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The COVID-19 pandemic has made us come to grips with the epidemic
problems, as they offer not only a set of practical problems to solve but
also interesting theoretical puzzles. The interconnectedness of individuals
in society plays a pivotal role in determining the scale and likelihood of
an outbreak [158, 115]. Integrating more realistic assumptions into our
models while employing advanced mathematical and computational tools
to study these complex systems is imperative. In this chapter, we discuss
how different diseases unfold in social networks and how, and in what
ways, various interventions can be effective considering the networked
structure of human populations.

3.1 Identifying Key Nodes in Networks

As discussed in Section 2.2.2, the friendship paradox is a key concept
in understanding the dynamics on social networks, particularly in the
context of disease spread [115]. In social networks, certain individuals,
known as hubs, are characterized by their high number of connections
[158]. These hubs play a crucial role in the propagation of diseases. Due
to their extensive network of connections, hubs are more susceptible to
contracting illnesses. The significance of hubs in accelerating the spread
of diseases within networks is twofold. Firstly, due to their higher-than-
average number of connections, these hubs have a greater probability of
encountering and contracting infections. Secondly, once infected, their
extensive connections facilitate them to transmit the disease to a larger
number of individuals compared to a typical node.

In the case of Severe Acute Respiratory Syndrome (SARS), a viral respira-
tory disease caused by a SARS-associated coronavirus, data from Singapore
revealed that the index patient, who had a large number of contacts, trans-
mitted the disease to many people [102]. Not all of these contacts further
spread the disease, but a few acted as hubs and were responsible for its
widespread transmission. This highlights the critical role of these hubs
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in propagating the disease. Therefore, an interesting strategy would be
to focus vaccination efforts specifically on these super-spreaders. The idea
of targeted vaccination[159, 76], suggests that immunizing these key in-
dividuals could disrupt the transmission chain, effectively curbing the
disease spread with fewer vaccine doses. The complexities and strategies
of vaccination campaigns, including this targeted method, are explored in
detail in Publication I and Chapter II.

However, identifying these hubs poses a challenge. Traditional vaccina-
tion methods often rely on random selection, which may not be optimal.
This is because the majority of the population tends to have average
or below-average connections, whereas the few true hubs have a dispro-
portionate impact on spreading the disease [158]. To address this, an
innovative approach called acquaintance immunization was proposed [48].
Rather than vaccinating individuals chosen at random, this method in-
volves asking the selected person to nominate a friend or acquaintance
for vaccination. By doing so, the likelihood of vaccinating a hub increases,
making the process more efficient and targeted in curtailing the spread of
diseases like SARS.

The logic behind the effectiveness of acquaintance immunization is simi-
lar to the way that the friendship paradox works. At first, this might seem
counter-intuitive, but there’s a logical reasoning behind it. If a person
has a high number of connections (a hub), they have a higher chance of
being nominated by any one of their numerous acquaintances. On the
other hand, a person with fewer connections has fewer chances of being
nominated. Therefore, this method naturally leads to the identification
and vaccination of hubs more frequently than a random approach would.
This method has been tested through simulations and works well there.
However, implementing the acquaintance immunization strategy in real-
world scenarios presents distinct challenges. First, there is a technical
hurdle: acquiring accurate network data can be complex and demanding.
This data is crucial for identifying key individuals within the network and
ensuring the strategy’s effectiveness. Second, a moral or legal challenge
arises when asking individuals to nominate friends. This request may
encounter resistance due to privacy concerns, as people might be hesi-
tant to share personal connections, or due to logistical issues in gathering
and managing such sensitive information. Despite these challenges, the
potential effectiveness of this strategy, as demonstrated in simulations,
highlights its promise as a valuable tool in combating infectious diseases.

3.2 Modeling Epidemics on Networks

To delve into epidemics within structured populations, it’s essential to
weave together the compartmental models presented in Chapter 1 with
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the network system methodologies discussed in Chapter 2. Achieving
analytical arguments necessitates analyzing the interplay between the
structure of contact patterns and the dynamics of disease propagation. The
primary hurdle is that compartment models are typically characterized
by coupled non-linear differential equations. Directly solving these com-
plicated equations on a graph is a daunting task, both numerically and
analytically.

Considering the inherently high-dimensional nature of dynamical sys-
tems on networks, we need to find a more manageable, lower-dimensional
representation that retains the essence of the original system. Such repre-
sentations should ideally be more intuitive and potentially amenable to
analytical approaches, like deriving approximate closed-form expressions
for quantities of interest [167]. Mean-field theories stand out as a promis-
ing strategy to achieve this [115]. When it comes to dynamical systems
on networks, these theories and similar methods of approximation are of
special importance [19].

3.3 Mean-field Approximations

In Physics, a mean-field approximation is a technique where the state of
a specific particle (for us, a node or a link, depending on the context, in a
network) is viewed in interaction with the collective average state of the
rest or, extending the idea, the distribution of states among all particles.
This approach is a valuable starting point for deciphering complex systems.
The approximation becomes even more accurate when interactions are
broadly of the same magnitude, reminiscent of those in a densely populated
random graph [167].

Mean-field approximation and heterogeneous mean-field theory are com-
monly used in the study of epidemic spread on networks [158]. Generally,
the mean-field approximation assumes that each node in the network in-
teracts with every other node in an identical manner, which simplifies the
model but may not capture network heterogeneity. On the other hand,
heterogeneous mean-field theory takes into account the different character-
istics and behaviors of nodes within a network, providing a more nuanced
and accurate representation of epidemic spread [201].

3.4 From the Contact Networks to Transmission Networks

If we model the contact network of a human population with network G,
the actual disease transmission might occur on a different network G′, de-
pending on the dynamics of the disease. The initial network, G, is termed
the contact network, while G′ is referred to as the transmission network

75



Epidemics on Networks

[41]. In practice, accurately describing contact networks is challenging
due to difficulties in measuring them [20]. Furthermore, there’s still much
to learn about contact networks’ topological characteristics and temporal
evolution. Gathering sufficient observations and data for a comprehensive
analysis remains a hurdle [155]. It is worth noting that transitioning to
the transmission network that dictates disease dynamics is not straight-
forward, even with a clear understanding of a contact network.

Consider a rather simple scenario where a disease spreads across a
contact network G. The disease’s dynamics manifest on this network
such that every link in the contact network has a probability p of actively
transmitting the disease [83]. To transition from the contact network to the
transmission network, one would replicate the original nodes, retaining
each link based on probability p. The resulting graph represents the
transmission network. Each node in this network represents an individual
infected at some point, and the number of nodes in the giant component
of this new network can serve as an indication of the epidemic size [150,
114, 113]. This mapping process is called the bond-percolation method. We
discussed percolation in depth in Sec. 2.8.

To execute a bond-percolation mapping, it’s essential to understand the
structure of the original contact network. In many real-world scenarios, our
knowledge about the contact network’s structure is limited. Yet, we might
possess a reliable estimate of the transmission network. Knowing the
transmission network simplifies many analytical calculations. For instance,
given a transmission network from the configuration model family, with
degree distribution pk, we can identify the basic reproduction number as
the mean excess degree of the transmission network [143, 149, 191] as

R0 = 〈q〉 . (3.1)

This is because the average excess degree of a transmission network yields
the expected number of secondary cases produced by a typical infectious
individual over the course of their infectious period in a fully susceptible
population. For locally tree-like networks with no correlations in their
connections, the basic reproduction number can be written as a function
of the first and the second moments of the degree distribution of the
transmission network, given by Eq. 2.19.

This understanding significantly aids in the application of our mean-
field approximations. Depending on the quantity of interest, we can write
different equations regarding the network structure. In the subsequent
sections, we will delve into the practical applications of transmission
networks.
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3.5 Mapping Epidemics to Percolation

Disease spread in network models, similar to fully mixed ones in Chapter 1,
operates on the contact network and is defined by a transmission rate, β,
indicating the infection probability per unit time between two connected
individuals. However, β in network models differs from fully mixed models
as it refers to contacts between an individual and their direct connections,
not the entire population. The transmission rate is influenced both by
the disease’s nature and social behaviors, affecting how often and closely
people interact within their communities.

Network models can simulate how diseases like the SI model spread over
time, with β determining the infection spread to connected susceptible
individuals. While calculating the disease’s spread over a general network
is complex, the eventual size of an outbreak is predictable: it will include
all individuals reachable from the initial infection through network paths.
This behavior, where an outbreak’s size depends on the network’s structure
and the initial infection’s position, introduces stochastic elements into the
model, leading to different outcomes even with identical parameters.

These network and percolation models capture more realistic dynamics
of disease spread than fully mixed models, acknowledging that not all
exposures lead to an epidemic. Realistically, diseases can fizzle out if
initial cases do not transmit to others. The models recognize the random-
ness in transmission and the variability in outbreak patterns, yielding
probabilities or averages rather than precise predictions.

3.5.1 SIR Model and the Configuration Model

The SIR model of Sec. 1.2.2 adds the parameter of recovery time to the
network model, where the disease may not always spread to a susceptible
individual before the infected one recovers. The transmission probability
p is based on the transmission rate β and recovery time τ, simplifying to
[150]

p = 1− e−βτ. (3.2)

Therefore, using the percolation threshold, the critical probability pc, we
can rearrange Eq. 2.38 to give [150]

βτ=− ln(1− pc)= ln

⟨︁
k2
⟩︁−〈k〉⟨︁

k2
⟩︁−2〈k〉 . (3.3)

Using a technique akin to bond percolation, where links are active or oc-
cupied with a probability p, we can predict that an outbreak will spread
across connected occupied links, corresponding to potential disease trans-
mission [150, 114]. The bond percolation model also indicates that the
giant component size corresponds to the final epidemic size, resembling
how diseases spread through populations. Similar to Sec. 2.3.2, given the
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transmission probability p, the total probability φ that a node does not
belong to the giant component can be written as [151]

φ= ⟨︁1− p+ pφk⟩︁
Q = 1− p+ pg1(φ), (3.4)

and the size of the giant component can be calculated as

Σ= 1−⟨︁φ⟩︁= 1− g0(φ), (3.5)

where g0 and g1 are the probability generating functions for the degree
and excess degree distributions of the contact network, respectively.

When the product of the transmission rate and the infectious period sur-
passes a certain threshold, an epidemic becomes a feasible event. However,
this does not guarantee an outbreak will occur, as the disease’s initial host
might not be part of the giant component of the transmission graph where
the epidemic could take hold. Conversely, if the product of β and τ does
not reach the critical threshold, an epidemic will not unfold, irrespective of
the seed of infection within the population. The likelihood and potential
extent of an epidemic provided that it is feasible, are quantified by Eq. 3.5.

The progression towards an epidemic within this model is influenced
by the value of βτ. An increase in either the time an individual remains
infectious τ or the rate at which the disease is transmitted β can pro-
pel the system toward an epidemic state. The specific value at which
this transition occurs, along with the chances and magnitude of an out-
break, is intricately linked to the network’s configuration, particularly the
average number of connections 〈k〉 and connections squared

⟨︁
k2
⟩︁
. This

consideration of network structure marks a stark contrast from the fully
mixed model, which does not take into account the effects of a network’s
configuration [140, 113].

In Publication I, we utilize this technique to calculate the number of
individuals infected after a vaccination campaign. Building on this ap-
proach, in Publication IV, we further apply the same percolation trick to
accurately determine the final outbreak size, incorporating the impact of
contact tracing. This demonstrates the adaptability and robustness of our
methodology in various public health scenarios.

3.6 Spreading on Temporal Networks

So far, our investigations have focused exclusively on static networks,
which remain unchanged over time. While this approach offers a reason-
able approximation for modeling social networks, it is both theoretically
and practically beneficial to integrate temporal heterogeneities. as we
discussed in Sec.2.7, into these networks [100]. By doing so, we can more
accurately assess the impact of the temporal characteristics of contact
networks on disease transmission.
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Temporal networks differ from static ones in that they inherently include
interaction timings, capturing real-world correlations and inhomogeneities
like diurnal patterns and burstiness of activity, which significantly in-
fluence spreading scenarios [134, 99, 97]. These networks also reflect
structural changes over time, crucial in studies like sexually transmitted
diseases, where relationship dynamics or geographical moves can alter
contact networks [134, 24]. The results from simulating spreading pro-
cesses on temporal networks often differ significantly from those on static
networks due to factors like linger time distribution and inter-event time
distribution [97, 144, 110, 71, 33, 131, 170].

3.6.1 Directed Percolation and Spreading Phenomena

Expanding upon our previous discussions, there is a well-established con-
nection between reachability and disease spread in static networks, un-
derpinned by percolation theory as highlighted in Sec. 2.8. However, this
interplay is less examined in temporal networks. Our research, detailed in
Publication V and VI, is dedicated to analyzing the temporal evolution of
spreading dynamics on networks and forging a solid link between reach-
ability in temporal networks and percolation theory. We have uncovered
that in these networks, limited-waiting-time reachability, a kind of con-
strained connectivity discussed in Sec. 2.7, exhibits a directed percolation
phase transition as described in Sec. 2.8.4. This discovery implies that
spreading behaviors in temporal networks can be insightfully studied us-
ing the directed percolation universality class, a finding consistent across
a variety of models and actual temporal networks.

Transferring analytical tools from static to temporal networks is a com-
plex task. We aim to bridge this gap by correlating reachability in temporal
networks with epidemic spreading, akin to how connectivity in static net-
works is associated with late-stage disease transmission, as extensively
researched in [150, 114]. Adapting some methodologies, we can interpret
reachability in temporal networks through event graph representation,
as cited in [118, 179, 101]. In these networks, ’reachability’—similar to
connectivity in static contexts—encompasses the capability to trace a
chronological path from one node to another amidst the fluctuating nature
of network connections over time, as described in [96]. The event graph
method outlined in Sec. 2.7 effectively translates time-sensitive reachabil-
ity data into a higher-order static directed acyclic graph (DAG), elaborated
further in Ref. [177]. This graph’s out-component provides insights on
nodes and periods that are reachable, whereas its in-component sheds
light on feasible origins and timings to reach certain destinations.

The directed percolation phase transition and its universality class, in-
troduced in Sec. 2.8.4, provide a valuable framework for converting these
mathematical concepts into a tangible physical model. This framework
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greatly improves our comprehension of the dynamics within temporal net-
works, especially concerning the spread of diseases and the flow of informa-
tion. In Publication V, VI, and Ref. [177], we have developed an extensive
framework that maps specific disease dynamics to a directed percolation
problem. This significant development enriches our understanding of how
temporal changes in network structures can influence both reachability
and, ultimately, the spread of diseases in temporal environments.

3.7 Homophily and Herd Immunity Threshold

A good example to see the power of a mean-field approach is to consider
a locally tree-like homophilic transmission network similar to the one
in Sec. 2.4.4. Let’s say we are interested in the epidemic threshold as
a function of network structure and spreading parameters. Assume a
naive population that we can vaccinate πv fraction of the individuals given
this condition that vaccinated and unvaccinated nodes are connected to
each other with different probabilities as depicted in Fig. 1.9 and the
network degree distribution follows pk. We will go through more details
and calculations in Publication II.

Our focus is on a group of epidemic models in which infection induces
complete and permanent immunity, whereas the immunity induced by
vaccines is generally incomplete. We represent the number of infections
among vaccinated and unvaccinated groups at generation m (stemming
from the initial infected case) as I(m)

v and I(m)
u , respectively. Assuming

ideal vaccine efficacy, the vaccinated group would experience no infections.
Hence, under a mean-field approximation, we can express the situation
using the following recurrence formulas:

I(m+1)
v = 0, (3.6)

I(m+1)
u = R0πuuI(m)

u , (3.7)

which is a typical branching process, with branching factor R0πuu. Remem-
ber that πuu is the probability that an unvaccinated individual is connected
to another unvaccinated in our homophilic network (Fig. 1.9) model of
Sec. 2.4.4.

It’s important to recognize that vaccines might not be flawless. Two
particular effects of vaccine protection are crucial when thinking about
herd immunity [88, 70]. One, the vaccine might lower the chance that
someone gets infected when exposed. This decrease is known as the efficacy
against susceptibility, labeled as fS [130, 106]. In our discussion, we’re
suggesting that the vaccine provides complete immunity to a portion fS of
those vaccinated, while the rest remain entirely vulnerable. Our model
views the vaccine as being all-or-nothing, unlike leaky vaccines that slightly
reduce everyone’s susceptibility. These models are equivalent under the
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assumption that the network is locally tree-like, on which our study is
based [88, 70]. Secondly, those who get infected even after vaccination
might be less likely to pass on the infection. We capture this using the
efficacy against infectiousness, fI, which indicates how much the rate of
secondary infection is reduced. Given these two new parameters, the
previous mean-field equations can be written as:

I(m+1)
v = (1− fS)R0[(1− fI)πvvI(m)

v +πuvI(m)
u ], (3.8)

I(m+1)
u = R0[(1− fI)πvuI(m)

v +πuuI(m)
u ], (3.9)

where πuv = 1−πuu and πvu = 1−πvv are the conditional probabilities that a
link from one group points to the other. We can rewrite these equations in
a matrix form such that

I(m+1) =MI(m), (3.10)

where I(m) = (I(m)
v , I(m)

u )⊺ and

M= R0

(︄
(1− fS)(1− fI)πvv (1− fS)πuv

(1− fI)πvu πuu

)︄
,

we see that the infection eventually dies out after a finite number of
generations if all the eigenvalues of the next-generation matrix M have an
absolute value of less than one. That is, at the critical point, the spectral
radius ρ(M)= 1.

In Publication I, we show that by adjusting the connection probabilities
using πv and Coleman homophily index h from Eq. 2.37, the critical vaccine
coverage for achieving herd immunity so that R0 = 1 can be expressed as:

πc
v =

1−ϵR0h
(1−ϵ)(1−h)

(︃
1− 1

R0

)︃
, (3.11)

Here, ϵ is defined as (1− fS)(1− fI) and it’s necessary that ϵ ≤ 1/R0. If
ϵ > 1/R0, the threshold for vaccination becomes obsolete, making herd
immunity unreachable.

In cases of a perfect vaccine, where either fS = 1 or fI = 1 or both:

πc
v =

1
1−h

(︃
1− 1

R0

)︃
, (3.12)

This equation narrows down to the commonly referenced threshold in
Eq. (1.22) when there’s homogeneous mixing and h = 0. The equation
suggests that as the intensity of homophily h grows, the critical vaccine
coverage πc

v for achieving herd immunity also increases (as illustrated in
Fig. 3.1). Simply put, having more homophily makes it more challenging
to achieve herd immunity. It’s key to highlight that when

h ≥ 1
R0

, (3.13)
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Figure 3.1. Critical coverage πc
v of a perfect vaccine required for herd immunity as a

function of homophily strength h for different values of basic reproduction
number R0. Positive values of h indicate homophily, while negative values
point to heterophily. The gray-shaded area in the figure denotes the parameter
space where the network cannot be realized.This figure is from Publication I

herd immunity can’t be achieved unless everyone is vaccinated. In other
words, regardless of how tiny the group of unvaccinated individuals might
be, there’s always a risk of a significant outbreak within that group.

We built a network-based framework to accommodate homophily related
to interventions. Our results show that a small level of homophily in
vaccination status can considerably increase the threshold required for
herd immunity and even make herd immunity impossible to reach. To
truly understand and predict the dynamics of spreading processes in the
presence of vaccination homophily, it is essential to incorporate these
factors into our models and analyses. For more details, see Publication I.

3.8 Disease-induced Herd Immunity

When immunity arises from a natural infection, the inherent heterogene-
ity in human interactions can significantly alter the dynamics of disease
spread. In contrast to vaccine-induced immunity, natural immunity ex-
hibits variations in its strength and nature. In particular, diseases often
target highly connected individuals in the early stages, leading to the
efficient immunization of these influential nodes [35]. However, while
epidemics tend to target and remove high-degree nodes, enhancing herd
immunity, the localized nature of these infections within the network can
simultaneously weaken it.

We will investigate the strengths and weaknesses of disease-induced
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herd immunity in Publication II. Our analysis is anchored in understand-
ing various network structures, with particular emphasis on two primary
aspects: degree heterogeneity (which looks at the variations in how nodes
connect) and spatial embeddedness (which focuses on the placement of
these networks within a defined space). For a clearer picture, see Fig-
ure 3.2.
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scale-free network spatial scale-free network

Figure 3.2. Network models according to their level of degree heterogeneity and spatiality
from Publication II. The three arrows indicate directions of sweeps conducted
through rewiring randomization. Spatial embeddedness describes how a
network is geometrically arranged in a set space. At one end, networks like
RRGs and Erdős-Rényi networks show minimal spatiality, representing the
most randomness. On the opposite end, lattices and RGGs have the most
spatial structure

We use link randomization techniques [204] to bridge the gap between
networks with high and low spatiality. Starting with a highly spatial
network, like a lattice or a random geometric graph, we modify a fraction
of its links. This modification can be done in two ways: double link swap
(which keeps the node’s degree constant) and random rewiring (which
maintains the total link count but not individual node degrees). Fully
randomized links transform a lattice into a random regular graph and
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a random geometric graph into an ER network. However, any network
becomes an ER network with complete random rewiring, regardless of its
starting point.

During these modifications, the network starts to show small-world traits
[204], thanks to the formation of long-range connections. This characteris-
tic persists until the network’s local structures dissolve, but the average
node degree remains unchanged. Refer to Publication II for more details.
Our results reveal that when there’s no degree heterogeneity, disease-
induced immunity has a milder impact compared to random immunization.
However, for Erdős-Rényi networks, both methods offer similar herd im-
munity levels. This outcome stems from two opposing forces at play in
disease-induced herd immunity. On one hand, epidemics tend to target and
remove nodes with many connections, bolstering the herd immunity effect.
On the other hand, the spread is concentrated and localized within the
contact network, which weakens herd immunity. See Fig. 1.10 for a visual-
ization. These competing forces are reflected in the number of connections
between susceptible and removed nodes and the average connections of
removed nodes. In networks with slight heterogeneity, the localization’s
influence is more pronounced than the targeted removal of well-connected
nodes.

3.9 Epidemic Spreading and Contact Tracing

Ibn Sina (Avicenna, 980–1037 CE), a Persian polymath, suspected that
some diseases were spread by microorganisms. He highlighted the concept
of quarantine in his influential work, The Canon of Medicine [17]. Contrary
to Galen but in line with Aristotle, he identified tuberculosis as contagious
[185]. It is clear that since the old times, quarantine as a restriction on
the movement and interactions between people has been around as an
effective non-pharmaceutical intervention for infectious diseases.

Contact tracing involves identifying and isolating individuals who have
been exposed to infected persons [34]. This method is not only effective in
containing the spread of diseases but also practical [208]. In this section,
we explore models that integrate epidemic spread with the implementation
of contact tracing. Contact tracing as a targeted approach proves cost-
effective and allows for the possibility of relaxing certain social distancing
measures, striking a balance between public health and economic con-
siderations [3, 199, 116]. Additionally, contact tracing is instrumental in
predicting future outbreaks, identifying new disease clusters, and tracing
the origin of infections [26, 79, 119, 120]. For a detailed analysis of contact
tracing, refer to Publication III and IV.

Note that in our study, we treat the concepts of isolation and quarantine
as being equivalent and thus use these terms interchangeably to reflect
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their similar roles in our model. However, it’s important to note that in the
context of public health, isolation and quarantine are considered distinct
approaches to controlling the spread of infectious diseases [153]. Isolation
involves separating individuals diagnosed with a contagious disease from
those who are healthy to prevent the transmission of the infection. On
the other hand, quarantine refers to the separation and limitation of
movement of people exposed to a contagious disease to monitor if they
develop symptoms. It focuses on individuals who might be infected but
are not yet confirmed to be sick. Therefore, in public health, isolation is
applied to ill and contagious people. In contrast, quarantine is used for
individuals at risk of falling ill due to their exposure to the disease [153].

3.9.1 Digital Contact Tracing

With the rise of affordable wearable health devices and mobile apps, digital
contact tracing has become more precise and efficient, addressing the
challenges of traditional manual tracing, such as slowness and reluctance
to share contacts due to various concerns [174, 147, 182, 156, 146, 169,
141, 189]. These modern tools not only facilitate contact tracing but also
provide real-time health data that can be used for other health strategies
[8]. In this section, following Publication IV, we focus on digital contact
tracing. It is the use of digital tools, often smartphone apps, to identify and
notify individuals who have been in close proximity to someone diagnosed
with a contagious disease, such as COVID-19. This technology aims to
quickly and efficiently track potential disease exposure and prevent further
spread.

We aim to understand how the size and threshold of the epidemic vary
when apps are installed based on specific criteria like homophily (Sec.
2.4.4). In a manner akin to the homophily observed in people’s vaccination
status, as mentioned in Sec. 3.7, individuals using the app tend to have
connections with other app users. In our representation, if one app user
infects another, the infected person is likely to self-isolate, thereby halt-
ing further transmission. By adopting this method, we offer a cautious
assessment of the influence of app-based contact tracing, especially when
a significant portion of the population is infected at once.

Consider a network analogous to the one in the vaccination scenario.
However, instead of individuals being vaccinated or not, they either use
contact tracing apps or don’t. These apps function effectively with a
probability of fapp. Assuming that πa proportion of individuals utilize
the apps, we can derive a mean-field approximation for the epidemic size.
This approximation is based on the branching process, similar to how it’s
done in Eq. 3.8 and 3.9;

I(t+1)
n = R0[πnnI(t)

n +πanI(t)
a ] , (3.14)
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I(t+1)
a = R0[πnaI(t)

n +πaa(1− fapp)I(t)
a ] . (3.15)

The probabilities π·· indicate the likelihood of interactions within and
across groups of app-users and non-app-users. Specifically, πaa represents
the probability of a connection between two app-users, πan denotes the
probability of a connection from an app-user to a non-app-user, πna signifies
the probability of a connection from a non-app-user to an app-user, and πnn

corresponds to the probability of a connection between two non-app-users.
We can again write these equations in a matrix form and find the spectral

radius of the next-generation matrix to find the critical app coverage to
curb the epidemic, similar to what we did for the herd immunity threshold.
We skip this as the calculations would be very similar to what we did in the
previous section. However, it is worth noting that when apps are working
perfectly, fapp = 1, for each value of 0<πa < 1, there is a non-trivial optimum
value for homophily h∗ that leads to the largest epidemic threshold such
that:

h∗ = 2−2πa

3π2
a −7πa +4

. (3.16)

This formula suggests that as the number of app users in a population
increases, the optimal level of homophily also increases steadily. In prac-
tical terms, this means that to maximize the benefit of a digital contact
tracing initiative, it’s essential to distribute the apps so that the user
group’s homophily matches h∗(πa). So, a population with fewer app users
will require a lower level of homophily to achieve the best results in terms
of increasing the epidemic threshold. Moreover, for any πa, the optimal
homophily is larger than the homogenous mixing condition where h = 0.

In our Publication IV, we explore how effective contact tracing is by mod-
ifying the conventional approach to analyzing percolation and connectivity
in contact networks. This involves applying our modified methodology to
networks with different characteristics like degree distributions, user num-
bers of the application, and chances of quarantine breaches. Additionally,
we consider populations with distinct social structures characterized by
homophily and heterophily and the potential for targeting specific degrees
in application distribution. Our findings are derived from a mix of direct
simulations and mean-field analysis. They reveal significant variations in
the size and probability of epidemics compared to standard SIR processes.
Notably, the variation in connections within the network (degree hetero-
geneity) plays a crucial role in determining the epidemic threshold, though
it has less impact on the size of the epidemic. The likelihood of tracing
leading to quarantine is not as critical as the rate of application adoption.
Moreover, we found that a strong preference for or against (homophily
and heterophily, respectively) adopting the application can be harmful.
In conclusion, the dynamics of epidemics are highly sensitive to all the
tested parameters, highlighting the complex, multidimensional nature of
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Figure 3.3. Illustration of contact tracing and transmission dynamics. The diagram shows
scenarios without loops (a-d) and with local loops (e). Successful infections
are indicated by solid red connections, while effective contact tracing is rep-
resented by dashed blue links. Following each exposure event, a susceptible
node (S) either isolates itself with a probability of α or becomes infected with a
probability of p, with these outcomes being independent. In scenarios without
loops, the interplay of infections and contact tracing can be simplified to a
single link, leading to four distinct outcomes: (a) no event occurs, (b) the infec-
tion is transmitted to the adjacent node, but contact tracing is unsuccessful,
(c) the infection does not transmit, yet contact tracing is effective, or (d) both
the transmission of the infection and the success of contact tracing occur. The
final scenario, marked with a green background, demonstrates the advantage
of contact tracing in interrupting indirect transmission routes, especially in
clustered networks. In scenario (e), which involves local loops, the situation
depicted in panel (c) becomes advantageous. This is because the quarantine,
implemented near the site of infection, can hinder the spread of the infection
to the neighboring node via a local loop. Essentially, timely quarantine in
the vicinity of an infection source can prevent the disease from reaching the
neighbor through these looped pathways.

estimating the impact of digital contact tracing.

3.9.2 Contact Tracing and Social Groups

In our previous examples, we assumed that the transmission networks
locally look like trees. That is the main reason why we could use simple
branching process arguments when we were interested in the phenom-
ena around the epidemic threshold. In Publication IV Real-world social
networks deviate from simple tree-like structures [133, 107], especially
regarding disease spread, as we discussed in Sec. 2.2.2. This can be seen
in densely connected groups like families or workplaces. Clique structures
play a crucial role in the spread of behaviors in complex contagion pro-
cesses where prior exposures increase adoption chances. This is different
from disease spread, where infections are independent of past exposures.

As we see in Publication III, disease spread combined with contact tracing
acts similarly to behavior spread, a.k.a complex contagion in networks,
with prior exposures reducing subsequent infections. This highlights the
significance of group structures in contact tracing.

To explore the dynamics of contact tracing on outbreaks based on a
model that emphasizes group interactions, we use Sec. 2.4.2 networks with
equal connections per node but varying group sizes. When someone in a
social group gets infected, they infect some members, and contact tracing
isolates others. Effective contact tracing targets those both infected and
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Figure 3.4. Every 3-clique is capable of exhibiting one of four distinct life stages or dif-
fusion patterns, each including at least a single infected node. In our model,
nodes that are either recovered or quarantined are grouped into the R com-
partment. Within a 6-regular 3-clique network, a node designated as Z1 has
the potential to form a Z2 motif alongside two other Z1 nodes, as well as a
Z3 motif when combined with four Z1 nodes. Furthermore, a node identified
as Z2 is capable of creating a Z4 motif in conjunction with two Z1 nodes. It’s
important to note that nodes within the Z1, Z2, and Z4 motifs have the possi-
bility of transitioning to infection-eliminated states, such as R,S,S, which are
not depicted here. This figure is from Publication III.

isolated, breaking transmission chains. However, even isolating uninfected
individuals can help control the spread. If contact tracing isn’t perfect,
isolating members can stop further infections. We will see that group
structures boost contact tracing effectiveness in Publication III. Specifically,
contact tracing in networks with cliques impacts the spread more than in
tree-like structures.

Let us continue with a basic mathematical model that uses a discrete-
time SIR approach to represent disease dynamics. In this model, infected
individuals spread the disease to nearby susceptible ones based on a
transmission probability p. These infected individuals then move to a
recovered state.

Contact tracing methods vary, such as using phone apps or manual
tracing, and their effectiveness depends on factors like recall of contacts,
delays in tracing, app adoption, and adherence to isolation guidelines [208].
In Publication III, these complexities are represented by an isolation
probability α, which indicates the chance a nearby node successfully
isolates to prevent further infections. Infected nodes can move susceptible
neighboring nodes to a quarantine compartment based on this probability.
This compartment can contain both infected and susceptible individuals, as
depicted in Fig. 3.3 when α= 0 the model reduces to a simple SIR process.

The infection and contact tracing processes are considered independent
in our model. The order of these processes in the model slightly affects the
epidemic size but not the epidemic threshold. We compute the epidemic size
by evaluating each infected-susceptible link, considering both the disease
spread and contact tracing. The total size of an epidemic is determined by
adding the number of infected individuals, both in and out of quarantine.

Using a multi-type branching process [111] to represent our SIR+Q
model, we can derive the relationship between p, α, and clique size, c,
concerning the epidemic threshold. In this model, we identify different
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clique motifs that represent potential states of susceptibles, infected, or
recovered nodes in any clique. These motifs are denoted by Zi, as seen in
Fig. 3.4 for a 3-node clique example.

i, j mi j

1,1 4p (1−α)

1,2 2p (1−α)

2,1 2p (1−α)2 (1− p)

3,1 p2 (1−α)2

4,1 2αp (1−α)

4,2 p (1−α)

Table 3.1. Non-zero elements of the next-generation matrix M4×4 for a 3-clique network.
mi j gives the expected number of Zi cliques from a Z j clique, as shown in
Fig. 3.4. This table is from Publication III.

Fig. 3.4 illustrates the four stages of a 3-clique’s life, where isolated and
recovered nodes are combined into one compartment (R) and Table 3.1
provides non-zero elements of M, detailing how motifs transition. The
matrix M represents the transitions between these motifs. For example,
the infected node in Z1 can infect one or two neighbors, corresponding to
motifs Z2 and Z3. Further, nc −1 new Z1 motifs are produced every time
such an infection takes place. That is, when Z1 turns into Z2 there are also
nc −1 new Z1 motifs, and when it turns into Z2 there are 2(nc −1) new Z1

motifs created.
It is always feasible to compute the average expected number of new

infections across all potential types of infection, utilizing our multi-type
branching process. This calculation is based on the next-generation matrix,
denoted as M, which is also known as the mean or population projection
matrix. The epidemic threshold in any clique network can be identified by
finding values for p and α where ρ(M)= 1.

Fig. 3.5a presents an epidemic phase diagram for networks with cliques.
The curves within this diagram separate it into sub- and super-critical
regions, determining the potential of an outbreak. Networks with larger
cliques have a more significant sub-critical region and a smaller super-
critical one. As the efficacy of contact tracing grows, the distinction between
critical p values widens.

This model demonstrates the enhanced efficiency of contact tracing in
clustered networks compared to tree-like structures or fully mixed popula-
tions. Specifically, when contact tracing is less reliable (for lower α values),
increasing clique sizes notably reduces the outbreak size. This suggests
that standard epidemic models might undervalue the efficacy of contact
tracing in networks with more clustering.

Our study, along with Publication III, simplifies disease transmission
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Figure 3.5. Phase diagram showing that increasing the clique size increases the epidemic
threshold and effectiveness of contact tracing. (a) The critical curves where
Re = 1 in the αp-plane for c ∈ {2,3,4}. The shaded area is the sub-critical
region for c = 2 where the infection eventually dies out after a finite number
of generations for any clique size. (b) The same phase diagram in αpe-plane,
where pe = p(1−α) is the effective transmission probability. The inset in panel
b shows the relative maximum increase in the effective epidemic threshold
for different networks with cliques. Each point in the inset is the ratio of
the pe values at the endpoints of each curve outside the inset, such that
Ic = pe(αmax)/pe(αmin). This figure is from Publication III.

and contact tracing modeling but highlights the importance of realistic
social structures. Key findings include the efficiency of contact tracing
in clustered networks and the impact of group sizes and contact tracing
efficiency on outbreak control. Our model, which contrasts with traditional
fully mixed or tree-like network assumptions, shows greater effectiveness
in networks with clustering. It also reveals the importance of considering
group structures in contact tracing, akin to complex contagion models
where previous exposures affect adoption/infection chances. This is partic-
ularly beneficial in early disease spread stages, helping to limit infection
paths. Our model also indicates that ignoring group structures in contact
tracing can lead to an oversimplified understanding of infection risk and
thresholds. We used a simplified dynamical model, integrating various
factors into a single parameter, which may not fully capture the nuances
of real-world contact tracing and disease spread.

Future research could incorporate more sophisticated SEIR models, but
our focus was on the critical transition from disease-free to endemic states.
The SIR model was chosen for its broad insights into epidemic outcomes,
allowing us to examine the impact of clique structures and contact tracing
on simple disease spread. In essence, our findings emphasize the need to
consider realistic social network structures in epidemic modeling, showing
that contact tracing is more efficient in clustered networks and that group
size and tracing efficacy significantly influence epidemic control.
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4. Conclusion

The COVID-19 pandemic has underscored the critical importance of com-
prehending epidemic dynamics, particularly in anticipation of future pan-
demics. As we discussed earlier and will explore in upcoming publications,
the structure of social networks plays a pivotal role in the spread and
intensity of epidemics, necessitating a deeper understanding of how var-
ious diseases propagate in society and the effectiveness of interventions
within these networked structures. My research has focused on developing
theoretical and computational approaches to gain insights into epidemic
spreading in the presence of realistic social network structures, partic-
ularly in the context of vaccination and contact tracing, and how these
interventions can be optimized given the networked nature of human
populations.

The topology of contact networks significantly influences the dynamics of
spreading phenomena. Group structures within these networks can either
contain or facilitate the spread of information or diseases. A key element
in these structures is homophily, the tendency of similar individuals to
connect, which can create areas of increased vulnerability or resistance
within the network. This phenomenon is particularly relevant in health
behaviors like adopting digital contact tracing apps or taking vaccines.
Traditional infectious disease models fall short of capturing the complexi-
ties of human interactions. Per contra, network-based frameworks give us
a more detailed understanding.

The heterogeneity in human interactions also plays a crucial role when
immunity arises from natural infection. Diseases initially target highly
connected individuals, which can lead to efficient immunization of these
nodes but also create localized weaknesses within the network. The in-
teraction between network structure and epidemic dynamics, particularly
the effects of network communities and higher-order interactions, remains
a vital area of research. The impact of contact network structural and
spatial properties on the threshold and robustness of herd immunity re-
mains an area of exploration. In this thesis, I began to address these
challenges by examining the effects of spatial structure on herd immunity
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in various network models. Future research should extend these find-
ings to networks with greater heterogeneity, such as scale-free networks.
Non-pharmaceutical interventions like contact tracing are essential in
controlling outbreaks, especially before vaccines become widely available.
My research has delved into the dynamics of contact tracing within social
groups and its influence on outbreak size and epidemic thresholds. Inte-
grating real-world complexities, such as tracing delays and adherence to
isolation protocols into models, remains a significant challenge.

This thesis delved into the temporal dynamics of spreading processes in
networks, establishing a crucial link between temporal network reacha-
bility and percolation theory. It reveals that when constrained by limited
waiting times, reachability exhibits a phase transition characteristic of
directed percolation, suggesting a new approach to analyzing spreading
behaviors. The research aims to uncover universal dynamics in spreading
processes and reachability in complex systems, enhancing our understand-
ing and aiding decision-making in policy and engineering. By integrating
temporal network analysis with non-equilibrium statistical mechanics, the
work identifies key measurable aspects of reachability, establishes their
connection to directed percolation parameters, and demonstrates their
alignment with directed percolation scaling behaviors. However, this is
just the beginning, as further research is needed to refine methods for
studying temporal network spreading and to observe these phenomena
in empirical networks, thereby deepening our understanding of complex
systems. A deeper understanding of reachability and spreading processes
will be instrumental in navigating and comprehending complex systems
and challenges.

As I draw to a close, I want to impart two profound insights that have
guided me.

Modeling an epidemic is not rocket science, it’s harder!

Nigel Goldenfeld, Pritzker’s COVID-19 press conference

The most terrifying fact about the universe is not that it is
hostile but that it is indifferent; but if we can come to terms
with this indifference and accept the challenges of life within
the boundaries of death—however mutable man may be able
to make them—our existence as a species can have genuine
meaning and fulfillment. However vast the darkness, we must
supply our own light.

Stanley Kubrick, Interviews (2001)
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We study how the herd immunity threshold and the expected epidemic size depend on homophily with respect
to vaccine adoption. We find that the presence of homophily considerably increases the critical vaccine coverage
needed for herd immunity and that strong homophily can push the threshold entirely out of reach. The epidemic
size monotonically increases as a function of homophily strength for a perfect vaccine, while it is maximized
at a nontrivial level of homophily when the vaccine efficacy is limited. Our results highlight the importance of
vaccination homophily in epidemic modeling.
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I. INTRODUCTION

In the paradigmatic susceptible-infectious-recovered
model of infectious disease in a fully mixed population
[1,2], so-called herd immunity is reached when the fraction
πv of the population that is immune to the disease through
vaccination or previous infection is larger than

π c
v = 1 − 1

R0
, (1)

where R0 denotes the basic reproduction number, i.e., the
expected number of secondary cases produced by a typical
infectious individual in a fully susceptible population. Here,
herd immunity means that the disease cannot spread in the
population because each infected individual can only transmit
the infection to less than one other individual on average; that
is, the effective reproduction number Reff = (1 − πv)R0 < 1.
Consequently, not only those who are vaccinated but also the
unvaccinated individuals are collectively protected from the
disease.

This model assumes homogeneous mixing where individ-
uals interact with each other randomly and independently of
their properties, such as their vaccination status. However,
this is a premise that may be too simplistic for modeling
real-world populations, which often exhibit inhomogeneous
mixing patterns that can lead to nontrivial epidemic out-
comes [3–6]. One of the inhomogeneities that would be
particularly relevant to vaccine-induced herd immunity is the
correlation between the vaccination status of interacting in-
dividuals [7–12]. When this correlation exists, the vaccinated
and unvaccinated individuals have different compositions of
vaccinated and unvaccinated neighbors. Let us introduce the
term vaccination homophily to represent mixing patterns that
are assortative with respect to vaccination status, so that
connections are more probable within the vaccinated and un-
vaccinated populations than between them. In this Letter, we

*takayuki.hiraoka@aalto.fi

investigate the effect of vaccination homophily on the herd
immunity threshold and the expected epidemic size.

II. MODEL

To this end, we formulate a random network theory of epi-
demic spreading under homophily with respect to the adoption
of an immunity-inducing vaccine. The links in the network
represent transmissible contacts between individuals, i.e., a
susceptible individual will get infected if connected to an in-
fected individual. We refer to this network as the transmission
network to avoid confusion with the contact network. Each
link in the contact network will let the disease be transmit-
ted through it with a certain probability; the links on which
transmission actually takes place constitute the transmission
network [13,14]. Here, we do not explicitly consider this prob-
abilistic transmission process but rather take the transmission
network as a given.

Within the population, a fraction πv of the population
adopts the vaccine, while the remaining fraction πu = 1 − πv

is not vaccinated. Vaccination homophily can be expressed in
terms of the bias in the probabilities of connections within
the two groups. Let us denote the conditional probability that
a random neighbor of an individual is vaccinated given that
the individual is vaccinated by πvv and, similarly, the condi-
tional probability that a random neighbor of an unvaccinated
individual is not vaccinated by πuu. Assuming that the aver-
age degrees (numbers of connections) of the vaccinated and
unvaccinated populations are equal, the two probabilities are
related as πuu = 1 − (1 − πvv)πv/πu.

The problem of using the connection probabilities πvv

and πuu as measures of homophily is that they are not
orthogonal to πv, so even if we fix the value of πvv,
the strength of homophily varies with different values of
πv. Moreover, the two connection probabilities are cou-
pled in a nonlinear manner, making it difficult to justify
using either of them as a representative measure of the
homophily of the entire network structure. To address
these issues, we adopt the Coleman homophily index,
originally proposed for social network analysis [15] and
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defined by

h = πvv − πv

1 − πv
= πuu − πu

1 − πu
. (2)

This measure has desirable axiomatic properties: (i) it is an
increasing function of both πvv and πuu, (ii) it is symmetric
for the vaccinated and unvaccinated populations, and (iii)
it takes a value of zero when the mixing is homogeneous
(no homophily) and a value of one when all links are in-
side the two groups, that is, πvv = πuu = 1. A negative value
implies that the network is heterophilic in terms of vacci-
nation status. Note that the connection probabilities πvv =
πv + πuh and πuu = πu + πvh must be positive and therefore
the Coleman homophily index is bounded from below as
h � max(−πv/πu,−πu/πv).

We consider the transmission network structure where πv,
h, and the degree distribution P(k) are specified but otherwise
maximally randomized. By letting 〈·〉 denote an average with
respect to P(k), the distribution of the excess degree k̃, i.e., the
number of other neighbors that a randomly chosen neighbor of
a randomly chosen node has, is given by (k̃ + 1)P(k̃ + 1)/〈k〉.
Neglecting the rare cycles, we can identify the basic reproduc-
tion number as the mean excess degree of the transmission
network as R0 = 〈k2〉/〈k〉 − 1 [16–18].

We consider a class of epidemic models where infection
induces complete and permanent immunity, whereas the im-
munity induced by vaccines is generally incomplete. There
are two effects of vaccine protection that are of interest for
modeling herd immunity [19,20]. First, the vaccine can re-
duce the probability that the recipient becomes infected upon
exposure. This reduction is referred to as the efficacy against
susceptibility and denoted by fS [21]. Second, individuals
who are infected despite being vaccinated may have a lower
probability of transmitting the infection to others. We repre-
sent this with the efficacy against infectiousness, fI, defined
as the reduction in the secondary infection rate.

Under this setup, the herd immunity threshold and the
expected final size of a large epidemic can be derived from
the structure of the transmission network alone, without ex-
plicitly considering the epidemic dynamics. In the following,
we leverage the theory of branching processes and percolation
theory to investigate these quantities of interest.

III. HERD IMMUNITY THRESHOLD

For a heterogeneous population consisting of multiple sub-
populations, we can use the next-generation matrix (NGM)
method [22,23] to identify the vaccination threshold π c

v
above which the disease cannot spread. While the NGM
method was originally developed for epidemic dynamics de-
scribed by ordinary differential equations, it can be naturally
interpreted as a description of the local structure of the trans-
mission network by a multitype branching process where
the branching factor is the excess degree of the network.
Let us denote by I (m)

v and I (m)
u the number of infections in

the vaccinated and unvaccinated populations, respectively,
at generation m from an index case (the first infected in-
dividual). Assuming a locally treelike network, we can

FIG. 1. Critical coverage π c
v of a perfect vaccine required for

herd immunity as a function of homophily strength h for different
values of basic reproduction number R0. Positive and negative val-
ues of h imply homophily and heterophily, respectively. The area
shaded in gray represents the parameter region where the network
is unrealizable.

write the following recurrence equations under a mean-field
approximation:

I (m+1)
v = (1 − fS)R0

[
(1 − fI )πvvI (m)

v + πuvI (m)
u

]
, (3)

I (m+1)
u = R0

[
(1 − fI )πvuI (m)

v + πuuI (m)
u

]
, (4)

where πuv = 1 − πuu and πvu = 1 − πvv are the conditional
probabilities that a link from one group points to the other. By
writing I(m+1) = AI(m), where I(m) = (I (m)

v , I (m)
u )ᵀ and

A = R0

(
(1 − fS)(1 − fI )πvv (1 − fS)πuv

(1 − fI )πvu πuu

)
,

we see that the infection eventually dies out after a finite
number of generations if all the eigenvalues of the NGM A
have an absolute value of less than one. That is, at the critical
point, the spectral radius ρ(A) = 1.

By reparameterizing the connection probabilities with πv

and h, the critical vaccine coverage needed for herd immunity
is given by

π c
v = 1 − εR0h

(1 − ε)(1 − h)

(
1 − 1

R0

)
, (5)

where we define ε = (1 − fS)(1 − fI ) and require ε � 1/R0.
For ε > 1/R0, the vaccination threshold disappears and herd
immunity becomes unattainable. For a perfect vaccine with
fS = 1 and/or fI = 1, we have

π c
v = 1

1 − h

(
1 − 1

R0

)
, (6)

which reduces to the well-known threshold of Eq. (1) for
homogeneous mixing with h = 0.

Equation (6) indicates that if the homophily strength h
increases, so does the vaccine coverage π c

v required for herd
immunity (see Fig. 1). In other words, the presence of ho-
mophily makes herd immunity harder to reach. Notably, the
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threshold occurs at π c
v = 1 for

h � 1

R0
, (7)

implying that above this critical strength of homophily, one
cannot attain herd immunity at all unless the entire population
is vaccinated. That is, no matter how small the unvaccinated
population is, there will always be a nonzero probability of a
large epidemic within this population.

Finally, we note that the above discussion applies to any
degree distribution P(k) with mean excess degree R0.

IV. EPIDEMIC SIZE

When the vaccine coverage is below the threshold, an
outbreak can result in an epidemic that infects a substantial
fraction of the population. The size of such an epidemic
coincides with the size of the giant component of the trans-
mission network because all the individuals in a connected
component will be infected if the index case belongs to the
same component [13,17]. Let us denote the probability that
a link pointing to a vaccinated node does not lead to the
giant component by φv and the equivalent probability for an
unvaccinated node by φu. These probabilities are subject to
the following consistency equations:

φv = fS + (1 − fS)g1( fI + (1 − fI )(πvvφv + πvuφu)),

(8)

φu = g1(πuvφv + πuuφu), (9)

where g1(x) = ∑∞
k=1 kP(k)xk−1/〈k〉 denotes the probability

generating function of excess degree. Having solved the above
consistency equations for φv and φu, we can compute the size
of the vaccinated and unvaccinated populations contained in
the giant component as

sv = (1 − fS)πv[1 − g0( fI + (1 − fI )(πvvφv + πvuφu))],

(10)

su = πu[1 − g0(πuvφv + πuuφu)], (11)

respectively, where g0(x) = ∑∞
k=0 P(k)xk is the probability

generating function of the degree distribution P(k). The total
size of the giant component is the sum of these two fractions
s = su + sv.

As an illustration, let us solve the above equations for a
random network with a Poisson degree distribution P(k) =
〈k〉ke−〈k〉/k!. For this network, the excess degree distribu-
tion is identical to the degree distribution and hence 〈k〉 =
R0. Given this degree distribution, we get g0(x) = g1(x) =
exp[−R0(1 − x)]. In the thermodynamic limit and in the ab-
sence of homophily (h = 0), this random network model with
the Poisson degree distribution reduces to the Erdős-Rényi
(ER) random graph ensemble, which is equivalent to homo-
geneous mixing. In other words, our model represents the
simplest deviation from the ER model through the addition
of homophily that biases the randomness of links.

First, let us consider the case of a perfect vaccine, for which
φv = 1. Equation (9) now becomes

φu = exp[−R0πuu(1 − φu)], (12)

which has an analytical solution:

φu = −W (−R0πuu exp(−R0πuu))
R0πuu

. (13)

Here, W (·) denotes the Lambert W function, which is the
inverse function of f (w) = wew. The giant component size
is then calculated from Eq. (11) as

s = su = πu{1 − exp[−R0πuu(1 − φu)]}, (14)

where all infections are restricted to the unvaccinated
population.

Figures 2(a)–2(d) show the solution of Eq. (14). The main
observation is that the expected epidemic size always in-
creases with homophily strength h. The difference in epidemic
size under strong and weak homophily is especially significant
when the vaccine coverage πv is not small. As an example, for
a disease with R0 = 1.5, the homogeneous mixing assumption
leads to the prediction that the vaccination threshold is 33%.
However, even if the vaccine coverage is well above this
threshold, strong homophily can still let the disease spread
in the unvaccinated population and infect up to 58% of it [see
Fig. 2(b)].

In the case of imperfect vaccines, the coupled consistency
equations are not analytically tractable. The solution of Eq. (9)
is given by

φu = −W (−R0πuu exp[−R0[1 − (1 − πuu)φv]])
R0πuu

, (15)

whereas for fS < 1 and fI < 1, Eq. (8) leads to

φu = 1

1 − πvv

(
1 − πvvφv + 1

(1 − fI )R0
log

φv − fS

1 − fS

)
.

(16)

We can numerically solve for φv by equating the right hand
sides of Eqs. (15) and (16). Plugging the results into Eqs. (10)
and (11) yields the giant component size.

In what follows, we present the results for fI = 0 and
only vary the efficacy against susceptibility, fS, for the sake
of simplicity. Figures 2(e) and 2(f) show the epidemic size
under the coverage of an imperfect vaccine. As expected,
a smaller efficacy leads to a larger epidemic and a higher
vaccination threshold. Unexpectedly, contrary to the case of
perfect immunization, the epidemic size first grows and then
shrinks with increasing homophily. This can be attributed to
the following competing mechanisms affected by increased
levels of homophily: (1) Similarly to the case of a perfect vac-
cine, more unvaccinated individuals will be infected as they
are connected to fewer immune individuals and more densely
within themselves, making them less protected by the herd
immunity effect. (2) An imperfect vaccine leaves a part of the
vaccinated population susceptible to breakthrough infections.
In the weak homophily regime, more vaccinated individuals
may contract the disease due to the larger epidemic in the
unvaccinated population. The risk of breakthrough infection
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FIG. 2. Epidemic size in Poisson networks as a function of homophily strength h and vaccine coverage πv. Top row: Two-dimensional
heat maps representing the epidemic size. The solid red line in each panel denotes the vaccination threshold. We represent contours of the
epidemic size at 0.1 intervals by different colors and solid black lines. Bottom row: Epidemic size divided by the size of the unvaccinated
population. Theoretical predictions (in lines) are compared with the giant component sizes obtained by simulating networks of size N = 105

(in symbols). The details of the network simulation can be found in the Supplemental Material [24]. (a) and (b) show the results for R0 = 1.5
and a perfect vaccine, (c) and (d) are for R0 = 3 and a perfect vaccine, and (e) and (f) are for R0 = 3 and an imperfect vaccine with fS = 0.75.
If the vaccine is perfect, only the unvaccinated individuals contract the disease; thus, the vertical axis in (b) and (d) corresponds to the fraction
of the unvaccinated population that will be infected. The cross symbols in (f) indicate the maximum of each curve. Note that the homophily
strength at which the epidemic size takes the maximum is independent of πv.

decreases as they become less connected with the unvacci-
nated population in the strong homophily regime. Figure 3(a)
gives an example of the two competing processes, where given
πv = 0.8, R0 = 3, and vaccine efficacy fS = 0.75, the final
epidemic size varies between 13% and 24%, reaching its peak
around h = 0.62.

As a consequence of the competition, the total number
of infected individuals is maximized, in general, at a non-
trivial level of homophily h∗, which depends on fS and
R0 but not on the vaccine coverage πv. The smaller the
R0 and higher the value of fS, the higher the strength
of homophily h∗ that leads to the worst overall outcome
[see Fig. 3(b)]. In other words, a highly infectious disease

FIG. 3. Effects of vaccination homophily for imperfect vaccines.
(a) The sizes of vaccinated population sv and unvaccinated popula-
tion su in the epidemic of size s. The parameters are R0 = 3, πv =
0.8, fS = 0.75. (b) The homophily strength h∗ maximising s as a
function of fS and R0.

countered by a vaccine with low efficacy spreads maxi-
mally in a population with a medium level of vaccination
homophily, while less infectious diseases generally benefit
from higher levels of homophily, especially if the vaccine
efficacy is high. The maximum impact of homophily on epi-
demic size is further discussed in the Supplemental Material
[24].

In the above discussion, we presented the results for the
case where the transmission network has a Poisson degree dis-
tribution and the efficacy against infectiousness fI = 0. These
conditions can be altered. In the Supplemental Material [24],
we calculate the epidemic size for transmission networks with
more realistically heterogeneous excess degrees that follow
the negative binomial distribution. We also discuss the case
where both fS and fI are varied. In both cases, the epidemic
outcomes are qualitatively similar to those obtained for Pois-
son networks and vaccines that purely affect susceptibility,
except for the fact that the homophily level at which the epi-
demic size is maximized is no longer independent of vaccine
coverage.

V. CONCLUSIONS AND DISCUSSION

We have studied the effect of vaccination homophily, i.e.,
assortative mixing by vaccination status, on the herd immunity
threshold and the expected epidemic size. In human soci-
ety, vaccination homophily can emerge due to the presence
of confounding factors, such as age [5], geography [25,26],
socioeconomic status [27], and personal and religious beliefs
[28], that influence both the likelihood of interaction between
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individuals and the likelihood of them being in a common
vaccination status. It can also occur as a consequence of
behavioral contagion [29,30] or inequality in the access to
the vaccine. Our analysis is built on a model that embodies
a minimalistic departure from the traditional assumption of
homogeneous mixing and shows that the vaccination thresh-
old for herd immunity is higher for stronger vaccination
homophily. This suggests that herd immunity is more difficult,
if not impossible, to achieve in the presence of vaccination
homophily. It also implies that the well-known formula of
Eq. (1) underestimates the vaccination threshold by not taking
homophily into account.

We also show that the behavior of epidemic size as a func-
tion of homophily varies depending on the vaccine efficacy
against susceptibility; when the efficacy is high, homophily
monotonically amplifies the epidemic, while the epidemic size
peaks at a nontrivial level of homophily when the efficacy is
low. This is due to the competition between the herd immunity
effect by homogeneous mixing and the epidemic containment
by segregation. We can identify the parameter values for
which homophily has a large impact on the epidemic size,
which will have direct implications for the design of inter-
vention strategies.

Apart from vaccination homophily, another important type
of inhomogeneity in networked epidemics is degree hetero-
geneity; namely, real-world epidemics often exhibit a large
variance in the number of secondary infections, whose dis-
tribution can be modeled by a negative binomial distribution
[4,6]. The herd immunity threshold given by Eq. (5) is not
affected by the overdispersion of the distribution, but the

epidemic size depends on the full shape of the distribution
and therefore differs from the one for a Poisson network, as
shown in the Supplemental Material [24].

Recently, we became aware of two other research works
[31,32] that report results in line with what we have described
here. They found qualitatively similar effects of homophily
on epidemic size for scale-free networks [31] and empir-
ical contact networks [32]. This further corroborates the
generalizability of our theoretical findings to networks with
heterogeneous degree distributions [33].

As a final remark, we note that our approach has a broader
scope. In this Letter, we focused on homophily by vaccination
status; however, our framework is general enough to account
for homophily by adherence to other epidemic interventions
that reduce the susceptibility or infectiousness of individuals,
such as the practice of social distancing [34], use of protec-
tive equipment [31], and adoption of digital contact tracing
[35,36]. It can also be applied to the analysis of herd immunity
in the case where the past infection (and consequent disease-
induced immunity) is localized to a subpopulation [37] and in
the case where the mixing pattern is assortative by risk factors
of the disease [38].
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The strength and weakness of disease-induced herd immunity

Takayuki Hiraoka,∗ Abbas K. Rizi, Zahra Ghadiri, Mikko Kivelä, and Jari Saramäki
Department of Computer Science, Aalto University, 00076, Finland

When a fraction of a population becomes immune to an infectious disease, the risk of widespread
outbreaks decreases non-linearly as a result of the collective protection known as herd immunity.
Typically, immunity to a disease can be acquired through natural infection or vaccination. It has
been argued that natural infection in a heterogeneous population may induce a stronger herd immu-
nity effect than homogeneous vaccination, because the early stages of transmission would primarily
affect highly interactive individuals, leading to more efficient suppression of subsequent infections.
In this study, we provide a comprehensive assessment of the herd immunity effect by analyzing
the behavior of the susceptible-infected-recovered (SIR) model on static contact networks. We find
that the effectiveness of disease-induced herd immunity is shaped by two competing mechanisms:
While it exploits degree heterogeneity in the contact network to efficiently target highly connected
individuals for immunity, it also introduces mixing heterogeneity between immune and susceptible
individuals, weakening herd immunity. By controlling the degree of spatial embeddedness of the
contact network structure, we find that spatial structure generally makes herd immunity stronger
and also enhances the advantage of the herd immunity effect induced by random immunization over
the disease-induced one in networks with low degree heterogeneity. These findings provide valuable
insights into the complexity of herd immunity and have implications for designing effective disease
control strategies.

INTRODUCTION

When an infectious disease is transmitted directly
through contact between individuals, conferring immu-
nity on individuals has a non-linear impact on the level
of protection of the population as a whole. Even if the
disease is transmissible enough to spread through an im-
munologically naive population, it may stop circulating
when a fraction of the population is immune due to ei-
ther previous infection or vaccination. This phenomenon
is called “herd immunity”, as it represents a collective ef-
fect where the immune individuals convey protection to
the entire population. There are parallels between herd
immunity and percolation phenomena, where a continu-
ous phase transition separates the two phases in which
the disease dies out and in which it spreads through a
finite fraction of the population [1–5].

Historically, the threshold for herd immunity has been
calculated assuming a population that is homogeneous in
terms of mixing and consequently in terms of the number
of contacts per individual (degree): everyone can ran-
domly interact with everyone else, giving rise to Pois-
son degree distribution. Importantly, it has also been
assumed that there is no structure in how immunity is
distributed in the population. However, these assump-
tions are overly simplistic when applied to real-world
populations—in reality, contact patterns are not uniform
and random, mixing within the population is typically
heterogeneous [6–9], and immunity may not be uniformly
distributed [10, 11].

Many of such heterogeneities are readily captured by
the complex networks of contacts through which the dis-
ease spreads. Network epidemiology has revealed the sig-
nificant impact of heterogeneity on epidemic spread, chal-

lenging simplistic assumptions of homogeneity [2, 12–14].
For instance, in scale-free networks, the threshold can be
as low as one, implying that containment is impossible
unless the entire population acquires immunity. On the
other hand, population heterogeneity can be leveraged
to design targeted and efficient immunization strategies.
Furthermore, a recent study by Britton et al. [15] demon-
strated that, when immunity is induced by natural infec-
tion, population heterogeneity may lead to a lower herd
immunity threshold than expected under homogeneous
mixing because the disease spreads among highly inter-
active individuals at the early stage of the epidemic, re-
sulting in more efficient immunization of these influential
hubs.
However, in addition to degree heterogeneity, the

structural aspects of the contact network need to be
addressed. Random immunization through vaccination
that is agnostic to individual attributes distributes im-
munity uniformly throughout the population; in contrast,
natural immunity is inherently localized in the contact
network. This is because those who get infected in an
outbreak that originates from a single source are con-
nected to each other in a chain of transmission, neces-
sarily forming a connected subgraph in the contact net-
work. This gives rise to mixing heterogeneities between
immune and susceptible individuals, akin to those dis-
cussed in the context of vaccination and other interven-
tions [10, 11, 16–18]. The consequences of such localiza-
tion for herd immunity have not yet been explored in a
systematic way [19–21].
Our aim in this paper is to conduct a comprehensive

analysis of herd immunity induced by natural infection
on contact networks by comparing it to the benchmark of
herd immunity induced by random immunization. Build-
ing on the framework introduced by Newman [22], we
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FIG. 1. (a) Nodes immunized by an epidemic outbreak (red)
on a random geometric graph. The dashed edges and the
red solid line indicate the interface between susceptible and
immune nodes. (b) The same number of randomly immunized
nodes (blue) on the same graph, resulting in a larger number
of interface edges.

employ the susceptible-infected-recovered (SIR) dynam-
ics as the epidemic model and measure the largest possi-
ble epidemic size after removing the recovered nodes. We
show that the net effectiveness of disease-induced herd
immunity is determined by the interplay of two compet-
ing mechanisms: the preferential immunization of highly
connected nodes by the epidemic and the localization of
immune nodes within the contact network. The former
makes the herd immunity effect stronger, while the latter
makes it weaker. Refer to Fig. 1 for visualization.

We illustrate the presence of the two mechanisms by
inspecting the mean degree in the residual subgraph and
the cut size between the removed and residual subgraphs.
We analytically show that within the configuration model
family of networks, the natural infection and random im-
munization yield herd immunity of equal effectiveness,
specifically in Erdős-Rényi (ER) contact networks, even
though they result in different mean residual degrees and
cut sizes. Natural infection has an advantage over ran-
dom immunization in networks with higher degree het-
erogeneity, while the opposite is true for networks with a
more homogeneous degree distribution.

We further extend the comparison between natural in-
fection and random immunization across various network
geometries. Namely, we explore a wide spectrum of net-
works by systematically varying the levels of degree het-
erogeneity and spatial embeddedness of the network. In-
terestingly, when the spatially constrained network struc-
ture is gradually perturbed through random rewiring of
edges, we find a non-monotonous behavior in both the
strength of disease-induced herd immunity and its rela-
tive advantage over random immunization.

MODEL

Epidemic dynamics and immunity

The susceptible-infected-recovered (SIR) model is a
canonical compartmental model for non-recurrent epi-
demics. The individuals and the contacts between them
are represented as nodes and edges in a static, undirected
contact network of size N . Each node can be in one
of three states: susceptible, infected, or recovered. The
dynamics run in continuous time. Transmission occurs
between each connected pair of an infected node and a
susceptible node independently at rate β, after which the
susceptible node becomes infected. An infected node re-
covers at rate γ, losing the ability to infect its neighbors.
After recovery, nodes gain immunity and never become
infected again, meaning that they are effectively removed
from the system. The probability T that transmission oc-
curs on an edge between an infected node and a suscepti-
ble node is given by T = β/(β + γ) [2]. In the following,
we set γ = 1 without loss of generality.

We consider two scenarios for introducing immunity
into a fully susceptible population. In the first scenario,
individuals gain immunity through infection and subse-
quent recovery. We randomly select a seed node to be
initially infected. After the disease spreads from this
primary source of infection and eventually dies out, we
remove the recovered nodes (i.e., those who experienced
infection) from the contact network. The second scenario
is random immunization, where we randomly select indi-
viduals to be immunized and removed from the contact
network.

Regardless of how immunity is induced, its effective-
ness at the population level is defined by its ability to pre-
vent future occurrences of diseases from invading the pop-
ulation and to reduce the size of epidemics. Specifically,
consider a disease that spreads among susceptible indi-
viduals with a transmission rate that is potentially larger
than β but cannot infect the immune (and removed) in-
dividuals. If immunity is conferred on a fraction C of the
population, either by natural infection or immunization,
the subsequent epidemic cannot be larger than 1− C as
a result of individual protection. In fact, 1 − C is the
size of the subgraph induced by the nodes that remained
susceptible, which we call residual subgraph. The actual
size of the epidemic depends on the contagiousness of the
disease, but it is further upper bounded by the size C ′ of
the giant component of the residual subgraph, or resid-
ual giant component for short. Since the removed nodes,
which account for a fraction C, are protected by individ-
ual immunity, the difference ∆ = 1 − C − C ′ between
the sizes of the residual subgraph and its giant compo-
nent quantifies the herd immunity effect in the case where
the transmission rate is infinitely large. See Fig. 2 for a
schematic illustration.
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FIG. 2. A schematic figure of individual immunity, herd im-
munity, and residual giant component in a contact network.
The immune population of size (fraction) C, indicated by red,
is directly protected by individual immunity. The residual
graph, indicated by grey nodes, may consist of multiple con-
nected components and there is at most one giant component
that single-handedly occupy a finite fraction of the graph. Its
size C′ defines the upper bound for the size of a subsequent
epidemic. The sum of the sizes of the other components, de-
noted by ∆, quantifies the herd immunity effect because they
are not directly protected by individual immunity, yet pro-
tected from a major post-immunity epidemic.

Network structure

For analytical tractability, networks are often assumed
to be locally tree-like, meaning that the likelihood of a
node being part of a finite-length cycle diminishes as the
network size increases. This simplifies analysis, espe-
cially for configuration model networks where the net-
work structure is solely determined by the distribution
of node degrees.

However, the real-world contact networks through
which infectious diseases spread are hardly tree-like.
Rather, they are characterized by the abundance of short
cycles, which stems from the fact that contacts are heav-
ily influenced by physical space; transmission only occurs
when individuals are in physical proximity to each other,
resulting in network structures that deviate from the lo-
cally tree-like assumption and exhibit a higher prevalence
of triangles and other short cycles.

In this study, we aim to explore a wide range of net-
work geometries, focusing on two key characteristics: de-
gree heterogeneity (variations in node connectivity) and
spatial embeddedness. Figure 3 illustrates these fea-
tures. Spatial embeddedness refers to the geometric ar-
rangement of the network within a specific metric space.
The least spatial networks belong to the configuration
model family, representing maximum randomness under
the given degree distribution. This includes random reg-
ular graphs (RRGs) and Erdős-Rényi (ER) networks. On
the other end of the spectrum, lattices and random geo-
metric graphs (RGGs) exhibit the highest spatiality.

To continuously connect the two extremes of the spa-
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FIG. 3. Network models used in this paper, positioned accord-
ing to their level of degree heterogeneity and spatiality. The
three arrows indicate directions of sweeps conducted through
rewiring randomization.

tiality spectrum, we employ edge randomization proce-
dures. We start with an instance of a network model
with the highest spatiality, namely a lattice or an RGG,
and rewire fraction ϕ of the edges. The rewiring process
is carried out either by exchanging the endpoints of two
randomly selected edges (double edge swap) [23], or by
removing a random edge and adding an edge between
a randomly selected unconnected pair of nodes (random
rewiring). The former preserves the degree of each node,
while the latter only preserves the total number of edges
in the network but not the individual node degrees. By
completely shuffling edges (i.e., ϕ = 1), the double edge
swap operation transforms a lattice into an RRG and an
RGG into an ER network. On the other hand, random
rewiring effectively generates an ER network at ϕ = 1,
irrespective of the initial structure.

PREFERENTIAL BUT LOCALIZED IMMUNITY

Let us first focus on the herd immunity effect in config-
uration model networks, where the degree distribution is
the only determinant of the network structure. Because
of the locally tree-like property of configuration model
networks, we can use the analytical framework to map
epidemic spreading to bond percolation process and solve
self-consistent equations to derive and calculate relevant
quantities, such as the expected sizes of an outbreak and
the giant component in the residual subgraph [2, 22]. We
begin with defining the probability generating functions
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(PGFs) of the degree distribution pk and the excess de-
gree distribution qk:

F0(x) =

∞∑

k=0

pkx
k, F1(x) =

∞∑

k=0

qkx
k =

F ′
0(x)

F ′
0(1)

.

When the immunity of nodes is induced by natural
infection with transmission probability T , probability u
that a random edge does not transmit the disease during
the first outbreak satisfies a self-consistency equation [2]:
u = 1− T + TF1(u). A node is susceptible after the first
outbreak (and thus in the residual subgraph) if each of its
neighbors either (i) does not become infected (in which
case the edge between them remains S-S), which happens
with probability F1(u), or (ii) becomes infected but fails
to infect the node (in which case the edge between them is
S-R), which happens with probability (1−F1(u))(1−T ) =
u− F1(u). Since the probability of being in the residual
subgraph is F0(u), the degree distribution P (m) of the
residual graph is given by [22]

P (m) =
1

F0(u)

∞∑

k=m

pk

(
k

m

)
[F1(u)]

m[u− F1(u)]
k−m.

The PGFs of the degree and excess degree of the residual
graph are given by

G0(x) =
F0(u+ (x− 1)F1(u))

F0(u)
,

G1(x) =
F1(u+ (x− 1)F1(u))

F1(u)
,

respectively. We obtain the size C ′ of the giant compo-
nent in the residual graph as C ′ = (1 − C)(1 − G0(v)),
where v is the solution of self-consistent equation v =
G1(v).

This framework allows us to calculate not only the
fraction of nodes in each state but also the fraction of
edges between nodes in each state. For instance, a ran-
dom edge will have a removed node on one end and
a susceptible node on the other end with probability
F1(u)(1−F1(u))(1−T ). Therefore, the fraction of edges
between susceptible and removed nodes is

ρSR = 2F1(u)(u− F1(u)), (1)

where factor 2 accounts for the arbitrariness in choosing
the ends of the edge.

If the immunity is instead induced by random immu-
nization of coverage C, the immunity of neighbors are
independent, so the residual degree m is distributed as

P (m) =

∞∑

k=m

pk

(
k

m

)
(1− C)mCk−m.

Following the same recipe, the PGFs of the degree and
excess degree of the residual graph are given by

H0(x) = F0(x(1− C) + C),

H1(x) = F1(x(1− C) + C).

0.2 0.3 0.4 0.5 0.6 0.7
transmission rate 

0.0

0.5

1.0

siz
e

C
C ′ after
first epidemic
C ′ after
immunization

FIG. 4. The outbreak size C of the first epidemic (gray),
the largest possible epidemic size C′ after the first epidemic
(red), and after randomly immunizing the same number of
nodes as in the first epidemic (blue), plotted as a function of
transmission rate β of the first epidemic. The contact network
is modeled by the regular random graph with N = 105 nodes
and degree k = 6. The symbols represent numerical results,
and the lines indicate theoretical predictions.

The size C of the giant component in the residual graph
is given by C ′ = (1 − C)(1 − H0(v)), v = H1(v). The
fraction of edges between susceptible and removed edges
is simply

ρSR = 2C(1− C). (2)

To see the impact of localization of the disease-induced
immunity on herd immunity, we first look at regular ran-
dom graphs in which every node has the same degree d.
The PGFs of the contact network are given by

F0(x) = xd, F1(x) = xd−1.

By numerically solving the self-consistent equations, we
obtain a theoretical prediction for C ′, which is corrobo-
rated by numerical results as shown in Fig. 4. The nu-
merical results are obtained by averaging over 50 differ-
ent realizations. Our results clearly show that the giant
component of the residual graph is smaller after random
immunization compared to the case where immunity is
induced by natural infection. This means that, in the
absence of degree heterogeneity, random immunization
provides a significant advantage in building herd immu-
nity compared to relying on natural infection.
Next, let us discuss the case where the contact net-

work is an instance of the Erdős-Rényi (ER) network.
In a large ER network, the degree distribution is a Pois-
son distribution, i.e., the degree and excess degree are
generated by the same PGF:

F0(x) = F1(x) = exp(m(x− 1)),

where m is the mean degree. In this case, the PGF of the
residual degree is the same for disease-induced immunity
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and random immunization:

G0(x) = H0(x) = exp[mem(u−1)(x− 1)].

In other words, the residual graphs in the two scenarios
have the same degree distribution, and therefore, the ef-
fect of herd immunity is equal. This is again supported
by the results from numerical simulation (see Fig. 5(b)).
Interestingly, even in this case, the fraction of edges be-
tween susceptible and removed nodes, ρSR, is smaller in
the case of disease-induced immunity, indicating localiza-
tion of the first epidemic (Fig. 5(f)). However, the impact
of localization is canceled out by the effect of preferential
infection and immunization of high-degree nodes, which
is represented by the larger average degree of removed
nodes (Fig. 5(j)).

EFFECT OF SPATIALITY ON HERD IMMUNITY

In the previous section, we limited ourselves to the
family of configuration model networks, which are char-
acterized by the locally tree-like property and thus pro-
vide analytical insights into the impact of the degree dis-
tribution on the strength of herd immunity. In this sec-
tion, we explore a wider range of network structures by
introducing spatiality. In particular, we investigate the
effect of spatial structure on herd immunity by studying
canonical spatial graphs, namely lattices and random ge-
ometric graphs, and by systematically interpolating the
spatial-to-tree-like spectrum of network structures via
random rewiring of edges.

First, we consider contact networks modeled by tri-
angular lattices and random geometric graphs (RGGs)
with an average degree of ⟨k⟩ = 6. Figure. 5(c) com-
pares the size C ′ of the giant component in the resid-
ual graph in lattices. We see mixed results when com-
paring the two strategies: Natural infection results in
smaller C ′ than random immunization when the frac-
tion C of removed nodes is small, while the trend is re-
versed as C becomes closer to the transition point, al-
though the difference between the two strategies is small
over the entire range of C. The strong localization of
the removed nodes for the disease-induced immunity is
manifested in the fraction of boundary edges, shown in
Fig. 5(g). For RGGs, we find that random immuniza-
tion is much more effective in dismantling the residual
giant component compared to disease-induced immunity,
as shown in Fig. 5(d). Although the disease-induced im-
munity can exploit the degree heterogeneity of RGGs,
the localization of disease-induced immunity is even more
emphasized (Fig. 5(h)), overtaking the effect of preferen-
tial removal of high-degree nodes (Fig. 5(l)).

Next, we investigate how different levels of spatiality
affect the herd immunity effect. To this end, we use the
edge rewiring method described in the Model section.

Specifically, we apply the degree-preserving process (dou-
ble edge swaps) to transform the contact network struc-
ture from a lattice to an RRG and from an RGG to an ER
network; in addition, we use the non-degree-preserving
process (random rewiring) for transformation from a lat-
tice to an ER network. To summarize the effectiveness of
herd immunity for each value of ϕ, we introduce C∗, the
minimum fraction of nodes that need to be removed to
dismantle the residual giant component, i.e., C ′ = 0. In
other words, even a disease with an infinitely large trans-
mission rate cannot invade the population if C ≥ C∗;
thus, C∗ represents the herd immunity threshold in the
worst case. Here, we numerically identify C∗ by observ-
ing the value of C when ∆ is the largest.

Figure 6 shows C∗ as a function of rewiring probability
ϕ for each rewiring path. Each data point represents 50
independent realizations of the contact network struc-
ture at a given ϕ. We see that for each path, random
immunization leads to smaller C∗ than disease-induced
immunity over the entire range of ϕ except for the case of
the ER network, for which C∗ is equal in both scenarios.
This confirms our previous findings for the configuration
networks that random immunization provides a greater
benefit to herd immunity when the degree distribution
is more homogeneous than the Poisson distribution. We
also find that the C∗ is generally smaller for spatial net-
works (on the left end) compared to configuration net-
works (on the right end). The difference between ϕ = 0
and ϕ = 1 is most pronounced for the case of random im-
munization in the RGG and ER network, but the same
trend is seen for all of the scenarios and rewiring paths.

By inspecting threshold C∗ as a function of rewiring
probability ϕ, we find that it is not linear and, in many
cases, not even monotonic. This is especially true for ran-
dom immunization, where C∗ is minimized at the inter-
mediate values of ϕ. Compared to random immunization,
C∗ changes more modestly in the case of disease-induced
immunity. As a result, the difference in the transition
points under the two scenarios is greatest in the region
where ϕ takes intermediate values. This can be explained
as follows: When a small number of edges are rewired
(0 < ϕ ≪ 1), the network is locally full of short cycles,
and these local neighborhoods are bridged by a few long-
range edges. When natural infection induces immunity in
such a network, large pockets of susceptibles will remain
in the network after the first outbreak if the infection
fails to spread across the bridging edges. On the other
hand, random immunization will have an equal ability to
block infection in every local neighborhood, so the effect
of low-dimensionality that makes percolation more diffi-
cult becomes predominant, leading to smaller values of
C∗.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

FIG. 5. Comparison of disease-induced immunity and random immunization as a function of the fraction C of removed nodes
in four different networks: regular random graphs (RRG), Erdős–Rényi graphs (ER), triangular lattices (Lattice), and random
geometric graphs (RGG). The size N = 105 and the average degree ⟨k⟩ = 6 in all networks. The top row shows the residual
giant component size C′ after the first epidemic (red) and after random immunization (blue). The center and the bottom rows
show the fraction ρSR of edges between susceptible and removed nodes and the average degree ⟨k⟩R of the removed nodes,
respectively. The symbols represent numerical results and the lines denote theoretical predictions.

(a) (b) (c)

FIG. 6. Threshold C∗ as a function of edge rewiring proba-
bility ϕ for disease-induced immunity (red) and random im-
munization (blue). Edge rewiring is performed on three dif-
ferent rewiring paths, correspondingly labeled in Fig. 3: (a)
from random geometric graph (RGG) to Erdős-Rényi network
(ER) by double edge swaps; (b) from lattice to ER by double
edge swaps; (c) from lattice to regular random graph (RRG)
by random rewiring. The size N = 105 and the average de-
gree ⟨k⟩ = 6 in all networks.

CONCLUSION

In this paper, we investigated the effectiveness of
disease-induced immunity as compared to random immu-
nization. First, we analytically compared the herd immu-
nity effect, quantified by the size of the giant component

in the residual graph, under the two scenarios in config-
uration model networks. We found that disease-induced
immunity leads to a weaker effect than random immu-
nization in the absence of degree heterogeneity, while
both of them lead to an equivalent amount of herd immu-
nity for Erdős-Rényi networks. This is a consequence of
the competition between the two mechanisms that shape
disease-induced herd immunity: while an epidemic pref-
erentially infects and removes high-degree nodes, mak-
ing the herd immunity effect stronger, it is contiguous
and localized in the contact network, making herd im-
munity weaker. The presence of these two mechanisms
is captured by the fraction of edges between susceptible
and removed nodes and the average degree of removed
nodes, respectively. Our results show that the impact
of localization outweighs that of preferential removal of
high-degree nodes in weakly heterogeneous networks.

We further examined the role of the spatiality of the
contact network structure on herd immunity. By scan-
ning through the spectrum of spatiality by rewiring edges
of lattices and random geometric graphs, we find that
spatial network structure generally makes herd immu-
nity stronger. The influence of space is particularly pro-
nounced in the case of random immunization, giving
it an additional advantage over disease-induced immu-
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nity. Furthermore, we found a non-monotonic behav-
ior in the effectiveness of herd immunity as a function
of edge rewiring probability. Throughout the rewiring
process, the small-world property emerges as long-range
connections form within the network [24, 25]. The con-
nection between the small-world property and herd im-
munity would be an interesting direction for further in-
vestigation.

We note that a similar line of research has been ex-
plored in the pioneering work by Ferrari et al. [19]. How-
ever, their work is based on observation of numerical sim-
ulations and rather ad hoc quantification. Furthermore,
the network structures considered are limited to a few
representative ones corresponding to discrete points in
the space of network geometries we study here. Our con-
tribution in this work is to elucidate the origins of the
variation in herd immunity strength, to provide theoret-
ical support for evaluating the effectiveness of disease-
induced herd immunity, and to cover the full range of
network geometries in order to provide a fuller picture
of the strength and weakness of disease-induced herd im-
munity.

In order to further advance our understanding of
disease-induced herd immunity, future research should
explore the implications of our findings for networks
with stronger degree heterogeneity, such as scale-free net-
works. Although this line of research is particularly rele-
vant for real-world applications since most empirical con-
tact networks are known to be degree heterogeneous, the
challenge would be to develop a network model that al-
lows for both tunable degrees of degree heterogeneity
and spatiality. In addition, investigating the herd im-
munity effect in real-world social networks, which often
exhibit various structural features, such as communities,
core-periphery structures, and households, would provide
valuable insights into the epidemic dynamics in a more
realistic setting. Such studies would help bridge the gap
between theoretical models and practical applications,
contributing to the development of effective strategies for
disease control and prevention.
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Contact tracing, the practice of isolating individuals who have been in contact with infected individuals, is
an effective and practical way of containing disease spread. Here we show that this strategy is particularly
effective in the presence of social groups: Once the disease enters a group, contact tracing not only cuts direct
infection paths but can also pre-emptively quarantine group members such that it will cut indirect spreading
routes. We show these results by using a deliberately stylized model that allows us to isolate the effect of contact
tracing within the clique structure of the network where the contagion is spreading. This will enable us to derive
mean-field approximations and epidemic thresholds to demonstrate the efficiency of contact tracing in social
networks with small groups. This analysis shows that contact tracing in networks with groups is more efficient
the larger the groups are. We show how these results can be understood by approximating the combination of
disease spreading and contact tracing with a complex contagion process where every failed infection attempt
will lead to a lower infection probability in the following attempts. Our results illustrate how contact tracing in
real-world settings can be more efficient than predicted by models that treat the system as fully mixed or the
network structure as locally treelike.

DOI: 10.1103/PhysRevE.109.024303

I. INTRODUCTION

Contact tracing identifies, assesses, and manages people
exposed to the disease through an infected individual [1]. This
approach, inclusive of testing [2,3] and isolating, has been
a cornerstone in controlling disease spread and preventing
outbreaks. The COVID-19 pandemic saw this methodology
employed globally with mixed results [4]. Countries like
China, South Korea, and Singapore have been lauded for their
effective contact-tracing efforts [5], while countries such as
the United Kingdom and the United States faced challenges
in executing successful programs [5–7]. Despite the targeted
nature of contact tracing, which avoids the broad societal
and economic impacts of more blanket measures like school
closures and travel bans, it is not without significant costs [8].
Implementing these programs can be resource-intensive and
may lead to unintended consequences, particularly regarding
privacy when digital tracking systems are involved [5]. Such
concerns emphasize the need for a reasonable evaluation of
the trade-offs associated with contact tracing initiatives.

The effectiveness of any public health intervention cannot
be divorced from the societal context in which it is applied. To
evaluate the success of both pharmaceutical and nonpharma-
ceutical interventions, we must take into account the network
structure of social interactions and health behaviors within the

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

population [9–12]. Given the complexity of social structures,
a strategy effective in one setting may fail in another. It is,
therefore, imperative to rigorously evaluate the factors affect-
ing the efficacy of contact tracing and other interventions,
considering the diverse ways social structures can influence
disease transmission.

The effectiveness of contact tracing is typically evaluated
based on the number of infected individuals preemptively
quarantined and its influence on halting transmission chains
[7,13]. This process is often assessed with the assumption that
contact networks are treelike. However, social networks con-
sist of overlapping groups such as families and workplaces.
Within these networks, an infected individual transmits the
infection to specific group members, while contact tracing
preemptively isolates others. Its success is most notable in
the intersection of these groups—those who are both infected
and isolated—as this effectively disrupts direct transmission
chains. However, preemptively isolating uninfected members
of these groups can also be crucial in controlling the spread of
the disease. If contact tracing is not entirely effective, omitting
some infectious individuals, then the isolation of others be-
comes vital in stopping further infections. Accordingly, even
isolations that might seem unnecessary due to contact tracing
can significantly positively impact controlling the disease.

Social networks exhibit diverse and dense substructures
which significantly impact contagion dynamics [14,15]. These
networks often feature clustering, crucial in complex conta-
gion models for behavior spreading, where repeated exposure
increases behavior adoption likelihood [16,17]. This ap-
proach contrasts with traditional disease-spreading models
that treat each infection event as independent. Gatherings can

2470-0045/2024/109(2)/024303(16) 024303-1 Published by the American Physical Society
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be modeled to show a nonlinear relationship between infected
contacts and infection risk [18]. Empirical studies have also
highlighted that the effectiveness of contact tracing varies with
the size of gatherings and can exhibit nonmonotonic patterns
[19]. Theoretical works in this area include the development
of a prompt quarantine model in clique-based networks, where
infected individuals and their contacts are quarantined with a
fixed probability. As detailed in Ref. [20], this model results
in continuous and discontinuous phase transitions and even
backward bifurcations, offering new insights into epidemic
control. It has also been shown that contact tracing is more
effective for large-scale epidemics with low tracing rates in
degree-assortative networks [21]. In contrast, in disassorta-
tive networks, higher contact rates make it more effective.
Disassortative networks are also more conducive to contact
tracing for more minor epidemics due to the robustness of
assortative networks against link removal [21]. This under-
scores the complex interplay between network structures and
epidemic control strategies, highlighting the need for tailored
approaches in different network settings.

In this work, we demonstrate the group dynamics of con-
tact tracing and their effect on outbreak sizes and the epidemic
threshold by developing a stylized contact tracing model and
a random network model with social groups manifested as
cliques. This allows us to build on methods developed for
spreading processes in networks with cliques [22–24]. Our
findings indicate that group structure enhances the effec-
tiveness of contact tracing. Specifically, contact tracing in
a network with cliques has a nonlinear impact on the ef-
ficiency of halting the spread of chains that occur over a
single link. This contrasts with models that assume a locally
treelike contact structure. We show that the combination of
disease spreading and contact tracing can be approximated
as a complex contagion process, where repeated exposures
reduce the probability of infection because they can lead to
isolation and thus can make subsequent infections impossible.
This interpretation of contact tracing as a complex contagion
explains our results on the importance of group structure.

The structure of this paper is organized as follows: In
Sec. II, we introduce (a) the random network models em-
ployed and (b) detail the epidemic model, along with the
contact tracing procedures. Section III is divided into two
main parts: (a) The first part focuses on identifying the
epidemic threshold and observing the phase transition in
epidemic size in networks with cliques. This is achieved us-
ing multitype branching processes, which provide mean-field
solutions for the reproduction number. (b) The second part ex-
amines how the subcritical epidemic size grows with disease
parameters and the sizes of cliques. Section IV discusses how
contact tracing in networks with cliques can be interpreted as
a complex contagion process. Finally, in Sec. V, we highlight
the implications of our findings for understanding and miti-
gating disease spread in social networks.

II. MODEL

We first introduce a random network model featuring
cliques as social groups in Sec. II A. After this, in Sec. II B,
we present the stylized dynamics we use for modeling disease
spreading and contact tracing.

FIG. 1. Illustration of r-regular c-clique network structures. Pan-
els [(a)–(c)] highlight the immediate network vicinity of a focal (red)
node within networks formed by 4-, 3-, and 2-cliques, respectively,
where each node consistently has a degree of 6. These configurations
are representative of the local topology repeated throughout the en-
tire network. Panel (d) provides an example of a 4-regular 3-clique
network, with each node having a degree of 4 and being part of two
3-cliques. Displayed are link stubs indicating connections to other
nodes, demonstrating the typical local structure one would encounter
in an extensive clique-based network. The shaded circular regions
signify the proximity to a central node, which is marked in red.
This shows the connectivity structure we examine using our r-regular
clique-type networks.

A. Random networks with cliques

Social networks, known for their complex, dense local
structures, significantly differ from treelike topologies, espe-
cially in disease-spreading scenarios [25]. This complexity
is due to high clustering in social units like families and
workplaces [14,15,23,26], leading to the need for novel tools
to understand cliques’ effects on spreading processes [16,26].
We aim to investigate the sole effect of social groups on
contact tracing, ignoring other salient social network features
such as degree heterogeneity or homophily [9,10].

In studying epidemic processes on networks, cliques are
idealized representations of social groups within contact net-
works. Each social group is represented as a complete graph,
where every member is connected to every other member, il-
lustrating the all-to-all connection pattern within these groups.
Figures 1(a) and 1(b) depict a focal node that belongs to two
4-cliques and three 3-cliques, respectively. In social networks,
c-cliques are complete subgraphs representing a group of c
people who are all connected and, thus, can potentially infect
each other [22,23].

To investigate the sole impact of group structure, we com-
pare network results in which nodes possess an equal number
of connections but belong to groups of different sizes. In our
model, we analyze homogeneous networks where all nodes
have the same number of links and the same level of net-
work clustering. We then compare different homogeneous
networks, where only the amount of clustering varies between
networks. This will allow us to isolate the impact of contact
tracing on spreading disease in the presence of cliques. In
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practice, this is made possible using clique-based network
generation methods [16,25,27–30].

The algorithm for generating networks with prescribed
clique structures generates an auxiliary bipartite graph with
one part for individuals and the other for groups, where links
are only between individuals and groups. This network is
then projected into a unipartite network of individuals, where
the groups become cliques, i.e., all the individuals in each
group are connected. We construct the bipartite graph by
giving each group c stubs and each individual nc stubs. As
we have a total of N individuals, each with degree nc, the total
number of stubs leading out of individuals should be N × nc.
The total number of stubs leading out of groups must be the
same. Therefore, the bipartite network must have (N × nc)/c
groups. We connect, uniformly at random, stubs leading out
of individuals to stubs leading out of groups. This provides
a bipartite network that defines which individuals belong to
which groups. Finally, we take an unipartite projection of the
bipartite network where individuals are the only nodes we
keep, and we connect two individuals if they belong to the
same group, i.e., if they are connected to the same group in
the bipartite network. The groups become the cliques in the
contact network, connecting individuals who are the nodes.

In the thermodynamic limit, such contact networks have
a vanishingly small number of self-loops or multilinks. See
Refs. [31,32] for further details on these network structures.
In practice, when we build such networks for our simulations,
we remove the few self-loops and multilinks, ending up with a
simple graph. Note that each c-clique contributes c − 1 links
to a node degree. Therefore, the number of cliques that a
node is a part of, nc, satisfies the condition nc(c − 1) = r.
When c = 2, the model generates a random r-regular graph,
see Fig. 1(c). Figure 1(d) illustrates a 4-regular 3-clique net-
work, where each node has a degree of 4 and is part of two
3-cliques.

B. SIRQ dynamics

Both contact tracing and disease transmission are compli-
cated processes in reality and are affected by various details
related to the particular disease, contact tracing procedure,
and the underlying social system. We aim to reduce these
complications into a minimal mathematically tractable model
that captures stylized dynamics of contact tracing and disease
spreading. We employ a discrete-time susceptible-infectious-
recovered (SIR) model to model disease dynamics [33], where
at each time step, each infected (I) individual independently
infects each neighboring susceptible (S) node with transmis-
sion probability p. After this, the infected individuals are
moved to the recovered (R) compartment. Importantly, this
time-discretized model ignores variations in recovery times
and can only implicitly consider complications such as incu-
bation periods [34].

Contact tracing can be implemented in various ways, such
as with phone applications [9], in different manual tracing
settings, or with combinations of these two [35]. The suc-
cess of contact tracing can be affected by the ability of
individuals to recall contacts, the delay times in the tracing
process, mobile phone application adoption, and the extent
to which the individuals follow the isolation or quarantine

FIG. 2. Diagram of the SIRQ model showing the flow between
compartments based on transition probabilities based on the stochas-
tic dynamics introduced in Sec. II B. Susceptible individuals become
infected with probability p and enter quarantine with probability α.
The Q compartment includes people in quarantine, either infected or
susceptible. Those who are both infected and quarantined move to
the QI subcompartment, while those who are only quarantined go to
the QS subcompartment of Q. Figure 3 depicts these two situations.
Infected individuals who are not quarantined go to the I compartment
and will recover deterministically in the subsequent time step.

recommendations [36–38]. We model all these complications
with the probability α of a neighboring node successfully
moving to compartment Q such that all further infections are
avoided. Further, the contact tracing moving nodes to the Q
compartment is done independently using the same contact
network as the infections. In the model, this translates to each
infected node placing each neighboring node into compart-
ment Q with probability α. The nodes in the Q compartment
can be either infected (QI ) or susceptible (QS). It is important
to highlight that the nodes within Q are distinctly separated
from those in set R, as they are housed in separate compart-
ments. Despite this distinction, it should be noted that neither
group of nodes contributes to the propagation dynamics. Fig-
ure 2 depicts the compartmental structure and the associated

FIG. 3. Schematic of contact tracing and spreading without loops
(a) and with local loops (b). Infections that would be successful
are marked with solid red links, and successful contact tracing with
dashed black links. After each exposure, a susceptible node isolates
itself with probability α and becomes infected with probability p
independently. If no loops are considered, then the combination of
infections and contact tracing can be reduced to a single link. There
are four possible scenarios: nothing happens; the infection spreads to
the neighbor, but contact tracing fails; the infection fails to spread,
but contact tracing succeeds; or (a) both infections spread, and the
contact tracing succeeds so that the node will be in subcompartment
QI . The last case is where we can benefit from contact tracing cutting
indirect spreading paths thanks to the presence of clustering. (b) With
local loops, an infection through a common neighbor of both nodes
can be avoided. As the quarantine takes place close to the infection,
it can prevent the infection from arriving at the neighbor through a
local loop as the node is in subcompartment QS .
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transition probabilities, while Fig. 3 demonstrates the benefits
of contact tracing, particularly when loops are present.

Our model treats isolation and quarantine identically, en-
capsulating both by the probability α. Consequently, we will
refer to both terms interchangeably, reflecting their similar
dynamics in our model. In public health, however, isolation
and quarantine are distinct strategies for preventing the spread
of contagious diseases [39]. Isolation separates individuals
who are sick with an infectious disease from those who are
not, and it is applied to confirmed cases to prevent the spread
of the infection to others. Quarantine, in contrast, involves
separating and restricting the movement of people exposed
to a contagious disease to see if they become sick, targeting
those who may have been exposed but are not yet confirmed
to be ill. Thus, in public health literature, while isolation is
for those already sick and contagious, quarantine is for those
who might become sick due to exposure [39]. It is worth
mentioning that our model also captures the impact of ring
vaccination [40], a strategy that involves vaccinating indi-
viduals around an infected person, effectively isolating them
from the disease network [41]. This strategy, which success-
fully eradicated smallpox [42], is paralleled in our model by
transitioning individuals to a quarantined compartment with
probability α.

Our model assumes the infection and contact tracing pro-
cesses are independent (i.e., we treat p and α as independent
probabilities). See Fig. 3 for an illustration of the process. The
order in which they are evaluated in the discrete-time model
does not make a difference for the epidemic threshold. How-
ever, there is a slight variation in the epidemic size depending
on the order, as the number of isolated infected individuals is
affected by the order in which nodes are infected and placed
in the quarantined compartment. For this purpose, we follow
an order where we go through one infected-susceptible link at
a time. First, we evaluate the spread of the epidemic and then
the contact tracing for that link.

We focus on contact tracing when the disease does not
reach a significant part of the population. An upsurge in
the number of infections can strain the contact tracing pro-
cess, leading to increased delay times that potentially weaken
its overall effectiveness [35,43]. In reality, a node may be
reinfected after leaving the compartment Q. However, as
our contact networks are large-enough random graphs with
cliques (see Sec. II A), the infection paths will not form sig-
nificant long loops. This means that for our model, we can
assume that the isolation times are long enough that they will
stop all the incoming infections to a node. We can indefinitely
keep the isolated nodes in the Q compartment. In other words,
with prolonged isolation, which may vary based on clique
size, postquarantine infection becomes negligible. Intuitively,
this modeling choice can be understood as the re-entry of
quarantined individuals into the susceptible (S) or infected
(I) states being unlikely before the infection subsides locally.
The impact of this assumption is explored in more detail in
Appendix E.

III. RESULTS

In this section, we demonstrate the impact of contact trac-
ing in networks with cliques. We begin by analyzing epidemic

thresholds in treelike networks (Sec. III A 1) and then assess
phase transitions in epidemic sizes in networks with cliques
(Sec. III A 2). We employ a multitype branching process to
understand the influence of spreading parameters and clique
sizes on the effective reproduction number (Sec. III A 3). The
effect of contact tracing on these thresholds is examined
(Sec. III A 4), followed by an analysis of outbreak sizes in
subcritical regimes, highlighting the role of quarantine proba-
bility and clique size (Sec. III B).

A. Epidemic threshold and reproduction number

Given a population in a demographic steady state, with no
history of a given infection or introduction of any intervention,
the basic reproduction number R0 determines if the introduc-
tion of the infectious agent causes an outbreak (R0 > 1) or not
(R0 < 1) in the absence of interventions [44]. This is because
R0 yields the expected number of secondary cases produced
by a typical infectious individual throughout their contagious
period in a fully susceptible population. Therefore, R0 as a
threshold for the stability of a disease-free equilibrium in a
compartmental model divides the phase space into super- and
subcritical regions, respectively. When interventions such as
contact tracing are implemented, we use the term effective
reproduction number Re instead of the basic reproduction
number to differentiate between situations with no interven-
tions in this paper. Therefore, to determine if the epidemic dies
out or yields an outbreak in the presence of an intervention,
we need to compute the value of Re [10]. Re as a bifurcation
parameter in our epidemic model depends on the spreading
parameters, p and α, and the network structure, which is
determined by c and r.

1. Random treelike networks

For a large treelike network, like a random r-regular graph
built with blocks the same as the one in Fig. 1(c), we can find
the epidemic threshold in the αp plane using

Re = p(1 − α)d̄, (1)

and setting Re = 1. Here d̄ represents the average excess de-
gree of the network. This is the average count of additional
connections that a node has, apart from the one used to ar-
rive at when it is found by traversing a uniformly randomly
selected link in the network. As our networks have uniform
degree distributions, such that every node has degree r, the ex-
pected excess degree is just the degree minus one, d̄ = r − 1.
It should be noted that even with the most severe disease with
p = 1, it is still possible to avoid an outbreak. By setting
p = 1 in Eq. (1) and solving for α, we can determine that
if the quarantine is carried out in such a way that α > 1 −
1/d̄ , then the effective reproduction number, Re, will remain
below 1.

In general, for a treelike random network with expected
excess degree d̄ , we can rewrite the effective reproduction
number as a product of spreading properties and network
structure as Re = ped̄ where pe is the effective transmission
probability and defined as

pe = p(1 − α). (2)
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So every active node can, on average, infect Re = ped̄ new
people who can propagate the disease, i.e., are not themselves
quarantining. When contact tracing is not in place (α = 0),
the effective reproduction number reduces to the basic re-
production number, R0 = pd̄ . Since we ignore variations in
recovery time, the SIR dynamics can be mapped to a bond
percolation problem, where p represents the link occupation
probability and the size of the giant component corresponds
to the final outbreak size [10,34,45,46]. This mapping results
in the epidemic threshold being equivalent to the percolation
threshold, which occurs at p∗ = 1/d̄ = 1/(r − 1). Thus, a
phase transition is expected from a disease-free equilibrium to
an endemic state. For example, for a 6-regular graph p∗ = 0.2,
and when α = 0.5, the epidemic threshold occurs at p = 0.4,
according to Eq. (1). Our forthcoming explanation of sim-
ulation results of random networks with cliques shows that
this equation aligns exceedingly well with c = 2 (no loops).
When the treelike assumption does not hold, for example,
when c > 2 in our network model, an alternative method is
required to determine Re. This is the focus of the following
sections.

2. Simulating the epidemic

Equation (1) is not applicable for networks with cliques,
as it assumes a locally treelike structure. However, we can
simulate the epidemic dynamics to observe how the outbreak
size varies with changes in disease parameters and network
structure. These simulations reveal a sharp increase in the out-
break size, transitioning from a few individuals to a significant
portion of the network, upon crossing certain thresholds of
p and α. Additionally, at the epidemic threshold, an ensem-
ble of simulations shows considerable variation in outbreak
sizes, reflecting the critical nature of this point as noted in
Refs. [46,47]. In our simulations, we build large networks
(with N ≈ 105 nodes) according to Sec. II A, run the SIRQ
dynamics 104 times, and find the ensemble average of the
number of nodes in the different compartments in each run as
our measure of disease spread from simulations. Using this,
we can calculate other quantities of interest. For example, the
size of the outbreak is then given by the ensemble averages
of the number of people in the R and QI compartments. We
follow an order to go through one infected-susceptible link at
a time for the epidemic size computations. First, we evaluate
the spread of the epidemic and then the contact tracing for
that link. This way, the number of infected people in quaran-
tine can be computed as NQI = pNQ. We find the size of an
epidemic E by summing up the number of infected people in
and out of quarantine, NQI and NR, respectively.

Figures 4(a)–4(c) illustrates the dependence of outbreak
size on the value of p under different scenarios, namely in the
absence of contact tracing (α = 0), and with contact tracing
at α = 0.25 and α = 0.5, for networks consisting of 2-, 3-,
and 4-cliques. As the clique size increases, the outbreak size
decreases for any given transmission probability. Moreover,
this effect is magnified by an increase in the value of α.

Furthermore, we use the fluctuations in the outbreak sizes,
χ , for determining the epidemic thresholds as illustrated in
Fig. 4(d). Fluctuation in outbreak sizes typically displays a
peak even in finite systems. When computed as a function of

(a)

(b)

(c)

(d)

FIG. 4. Phase transitions from a disease-free equilibrium to an
endemic state for 2-, 3-, and 4-clique networks with degree 6 as
introduced in Sec. II A. [(a)–(c)] The outbreak size E , normalized to
the network size, is shown on the vertical axis for when (a) α = 0 (no
contact tracing), (b) α = 0.25, and (c) α = 0.5, from top to bottom
respectively. Note that the transition points are shifted slightly to
the right for larger clique sizes, c, even when there is no contact
tracing (α = 0), but this difference is substantially amplified for
larger α values. (d) The coefficient of variation of outbreak sizes
in an ensemble, χ normalized to unity for α = 0.5. We use χ to
numerically detect the transition point as it peaks at the epidemic
threshold. Results are based on Monte Carlo simulations introduced
in Sec. III A 2.

infection probability p, the peaks in χ indicate the epidemic
thresholds for some value of α. This measure is analogous
to susceptibility in critical phenomena [48], which measures
the response magnitude generated by a small external field
disturbance [49]. In practice, we run a set of simulations and
calculate the coefficient of variation of the outbreak sizes,
which is the ratio of the standard deviation of outbreak sizes to
their ensemble average, χ = σE/〈E〉 [33]. Figure 4(d) shows
that for a fixed r, here r = 6, contact tracing on networks with
cliques is more effective when the contact networks include
larger cliques. So the larger the clique size, the larger the
critical transmission probability.

3. Mean-filed reproduction number

By representing our stylized SIRQ model using a multitype
branching process, we can derive the relationship between p,
α, and clique size, c, on the epidemic threshold. In the mul-
titype branching process representation of our SIRQ model,
we track different clique states, which we refer to as clique
motifs. Each clique motif accounts for the possible number
of susceptible, infected, or recovered nodes that any clique
can inhabit at a given time. Every possible motif is denoted
by Zi (refer to Fig. 5 for listing possible clique motifs for
a 3-node clique). Regardless of the network structure, we
can always average the expected number of new infections
over all possible infected types from our multitype branching
process with the next-generation matrix [44]. To do this, we
track the propagation of clique motifs in a network under the
introduced dynamics and form the next-generation matrix M
for the number of motifs in the network. The matrix M is also
known as the mean matrix or the population projection matrix
[50], and its element mi j gives the expected number of motifs
of type Zi that are created in the next time steps from a motif
of type Zj .
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FIG. 5. Each 3-clique can have four life stages or diffusion pat-
terns with at least one infected node. Section III A 3 considers both
recovered and quarantined nodes in the R compartment. Using a
6-regular 3-clique network, we observe that a Z1 node can form a Z2

motif with two Z1 nodes and a Z3 motif with four Z1 nodes. A Z2 node
can also create a Z4 motif with two Z1 nodes. Nodes in the Z1, Z2,
and Z4 motifs can transition to an infection-annihilated states such as
{R, S, S} which are not shown here. In Sec. IV, we assume that both
quarantined and susceptible nodes are in the S compartment, while
only recovered individuals are in the R compartment.

Figure 5 shows the motifs corresponding to the four life
stages of a 3-clique. In this representation, we have combined
the isolated and recovered nodes into a single R compart-
ment because these two compartments are equivalent for the
epidemic threshold computations. The next-generation matrix
represents the transitions between these motifs. For example,
the infected node in Z1 can infect one or two neighbors,
corresponding to motifs Z2 and Z3. Further, nc − 1 new Z1

motifs are produced every time such an infection occurs. That
is, when Z1 turns into Z2, there are also nc − 1 new Z1 motifs,
and when it turns into Z2, there are 2(nc − 1) new Z1 motifs
created.

Table I shows the nonzero elements of M. For example,
the transition from Z2 to Z4 occurs when contact tracing fails
(with probability 1 − α). The infection is successful with
probability p, which means that, in expectation, a single Z2

motif produces m42 = p(1 − α) new Z4 motifs. The motif
Z4 can also be made when the infected node in Z1 puts one
neighbor in quarantine (with probability α) and fails to do so
for the neighbor and infects it instead [which happens with
probability p(1 − α)]. As there are two ways of choosing the
infected and isolated neighbor, the expected number of Z4 mo-
tifs produced by the Z1 motif is given by m41 = 2α[(1 − α)p].
The rest of the transitions are produced similarly by comput-
ing the probabilities of going from one motif to another. As
described in Appendix D, we write general formulas for any
transition and use this to automatically generate the desired
mean matrix, M, for cliques of any size.

TABLE I. Nonzero elements of the next-generation matrix M4×4

for a 3-clique network. mi j gives the expected number of Zi cliques
from a Zj clique, as shown in Fig. 5.

i, j mi j

1, 1 4p(1 − α)
1, 2 2p(1 − α)
2, 1 2p(1 − α)2(1 − p)
3, 1 p2(1 − α)2

4, 1 2αp(1 − α)
4, 2 p(1 − α)

(c) (d)

(a) (b)

FIG. 6. The impact of contact tracing in clique networks on
mitigating epidemic spread: This figure illustrates the decline in
the effective reproduction number, Re, with the contact tracing
parameter, α, across networks with various clique configurations.
Specifically, we examine cliques of sizes c = 2, 3, 4 with r = 6
and transmission probability p = 0.5 in panel (a), and cliques of
sizes c = 6, 11, 16 when r = 30 and p = 0.1 in panel (c). Networks
with larger cliques achieve the critical threshold of Re = 1 with less
contact tracing effort. When c = 2, the influence of contact tracing
on Re aligns linearly with α, according to Eq. (1). In scenarios
involving larger cliques, this relationship turns concave and is further
intensified as the clique size increases or the transmission probability
decreases. The dotted lines are from the mean-field calculations
introduced in Sec. III A 3, and the markers are from Monte Carlo
simulations described in Sec. III A 2. Panels (b) and (d) show a rel-
ative difference of Re to the linear case when c = 2 (Rlin

e ). Figure 13
shows similar results to panel (a) for different p values. The larger
the transmission probability, the larger the differences between the
curves of other networks with cliques.

What is significant about the next-generation matrix is that
its spectral radius (Perron root), or the largest modulus of
the eigenvalues [51], yields the effective reproduction number
[52,53] such that

Re = ρ(M), (3)

and epidemic thresholds for any given clique network can be
found for finding p and α such that Re = 1. We give more
detailed arguments about this identity in Appendix C, and
show that this definition aligns with the simulation results of
Fig. 6.

In Fig. 6, we present the effective reproduction number,
Re, across various clique sizes under differing transmission
probabilities, integrating results from both mean-field calcula-
tions and simulations, detailed in Sec. III B. The figure reveals
a nonlinear relationship between Re and the intervention pa-
rameter α, particularly for larger cliques. This observation
is crucial in practical scenarios where the basic or effective
reproduction number is a key metric for monitoring and con-
trolling epidemic situations. Public health officials often rely
on this data, represented on the horizontal axis, to gauge the
extent of interventions required to bring the epidemic under
control, aiming to reduce Re below the critical threshold of 1
by increasing α.
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(a) (b)

FIG. 7. Phase diagram showing that increasing the clique size
increases the epidemic threshold and effectiveness of contact tracing.
(a) The critical curves where Re = 1 in the αp plane for c ∈ {2, 3, 4}.
The lines indicate the results of the mean-field approximations de-
scribed in Sec. III A, and the markers show results for simulations
described in Sec. III A 2. The shaded area is the subcritical region for
c = 2 where the infection eventually dies out after a finite number of
generations for any clique size. (b) The same phase diagram in αpe

plane, where pe = p(1 − α) is the effective transmission probability
defined in Eq. (2). The larger markers in the right end in panel b
indicate extreme points from Eq. (4). The inset in panel b shows the
relative maximum increase in the effective epidemic threshold for
different networks with cliques. Each point in the inset is the ratio of
the pe values at the endpoints of each curve outside the inset, such
that Ic = pe(αmax)/pe(αmin ).

More successful contact tracing leads to a lower effective
reproduction number, and the extent of this reduction in net-
works with cliques is larger than in treelike networks. As
seen from Eq. (1), given the basic reproduction number, R0

(Re without contact tracing), the Re decreases linearly with
α, following Rlin

e = (1 − α)R0. However, as demonstrated in
Figs. 6(a) and 6(c), this reduction is not linear in networks
with cliques. The difference between this simplistic linear
estimation and the more realistic Re [Eq. (3)] yields the error
of assuming contact networks are locally treelike. Figures 6(b)
and 6(d) higlight this discrepancy by showing the relative

error, Re−Rlin
e

Re
, between these two approaches. These errors

become more pronounced in networks with larger groups. It
reaches around 20% for cliques of size 4 and around 50% for
cliques of size 16.

4. Epidemic threshold

Next, we will use the mean-field framework developed
above to investigate the epidemic thresholds. Figure 7(a)
presents the phase diagram of the epidemic for various net-
works with cliques by drawing Re = 1 curves in the αp plane.
These curves divide the plane into sub- and supercritical
regions. In the subcritical region, there is no possibility of
an outbreak that scales with the network size. In contrast,
in the supercritical region, there is a positive probability of
such an outbreak upon infection. For networks with cliques,
increasing the clique size enlarges the subcritical region and
shrinks the supercritical region. Note that even without con-
tact tracing (i.e., when α = 0), including a clique structure in
random graph models raises the epidemic threshold slightly.
However, this effect is amplified by contact tracing, which can

(a) (b)

FIG. 8. Critical curves rescaled as effective branching factors for
treelike networks (r − 1)pe. Panel (a) is the same as panel Fig. 7(b),
but on the vertical axis, the effective transmission probabilities are
multiplied by the excess degree. Further, results are shown for a
larger network where r = 12. The red curves marked with stars are
for the case that there c = 2 and the network is treelike, therefore
Eq. (1) holds such that Re = ped̄ = pe(r − 1) = 1 for any α value.
For c > 2, this equation does not hold. The right end markers on
panel a indicate extreme points from Eq. (5). The inset shows the
relative maximum increase in the effective epidemic threshold for
different networks with cliques. Each point in the inset is the ratio of
the pe values at the endpoints of each curve outside the inset, such
that Ic = pe(αmax)/pe(αmin ). (b) This panel shows how (1 − r)pe

changes when we have networks with different degrees, r = 6 to
r = 18, and maximal connectivity-preserving clique size (i.e., when
nc = 2).

be observed as an increased difference between the critical p
value as α increases.

We illustrate that the combined impact of contact trac-
ing and cliques is larger than one would expect by the
treelike assumption by plotting the critical effective trans-
mission probability pe, defined in Eq. (2), as a function of
α. Figure 7(b) displays this rescaling of the critical values.
For treelike networks, such as 2-clique networks, Re = 1
corresponds to a constant (horizontal line) in the rescaled
representation, while for networks with cliques, this value
increases with α. This indicates that networks with cliques
require much larger effective transmission probabilities to
reach the epidemic threshold compared to what is expected
by the treelike approximation, with the difference growing as
the isolation probability α increases. This shows the moder-
ating effect that clique structures can have on an epidemic
in the presence of contact tracing, as it helps to cut not only
onward infections but also local indirect spreading paths in the
network.

The transition points strongly depend on the node degree,
r, in the class of clique networks we consider here. For most
of the analysis in this paper, we kept the node degree fixed
to r = 6 (Fig. 7); here, we turn our attention to how node
degree can affect disease spreading. We do this by varying
r and holding other network properties constant. This is in-
teresting because the node degree, r, rescales the transition
points between sub- and supercritical regions. More precisely,
if we use the excess degree to scale the critical pe by plotting
(r − 1)pe as a function of α, then the phase diagram returns
to a scale that is independent of r such that the c = 2 line
is precisely at (r − 1)pe = 1. This rescaling is illustrated for
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FIG. 9. Spreading process in a 6-regular 3-clique network under
the extreme case of p = 1, where the infection propagates severely
through the cliques. In this scenario, (a) an active node (infected
but not in quarantine) can transmit the disease to other nodes in its
adjacent cliques, (b) resulting in new infections. The number of new
infections caused by an active node is not equal to the total number of
members in the cliques that the node belongs to, which is nc(c − 1),
but rather the number of members in the cliques attached to that
node, excluding the clique that infection is coming from, which is
(nc − 1)(c − 1) = 2 × 2. For further details on the network structure
and spreading dynamics, refer to Secs. II A and II B.

r = 6 and r = 12 in Fig. 7 and Fig. 8(a) for valid network
configurations, respectively. Recall that the networks we study
still must obey nc(c − 1) = r.

A more systematic exploration can be found in Fig. 8(b),
where each node belongs only to two cliques, nc = 2, rep-
resenting the extreme nontrivial scenario where each clique
is as large as possible without the network consisting solely
of isolated cliques. In this case, the critical curves collapse
in the rescaled plot for a range of r = 6 to r = 18 that we
tested. The collapse approximately follows a straight line from
(r − 1)pe = 1 for α = 0 to (r − 1)pe = 2 for α = 1, with
the approximation getting better for larger values of α. Note
that for α = 0, the critical transmission probability equals
the critical bond percolation probability for the SIR model
[20,24,34,54].

The curve collapse can be understood by examining the
extreme case p = 1 (where the infection always succeeds),
and the critical point for contact tracing probability α∗ (i.e.,
how large does α need to be to prevent an outbreak when
p = 1). In this case, infected nodes always infect all of their
neighbors, and during the early stages of the epidemic, each
clique either has (1) exactly one infected node and c − 1
susceptible nodes, (2) one recovered node and c − 1 infected
nodes (from which a fraction of α are isolated in expectation),
or (3) only susceptible nodes. When an infection arrives at
a clique, the infected node, which is not in quarantine, can
spread the infection to (nc − 1)(c − 1) new nodes (offspring)
in the next time step, as illustrated in Fig. 9. Therefore, α∗
can be obtained by setting the expected number of active (in-
fected but not in quarantine) nodes to one, which occurs when
(1 − α)(nc − 1)(c − 1) = 1. Therefore, the critical value for
α is given by

α∗ = 1 − 1

(nc − 1)(c − 1)
. (4)

Markers in the right end of Fig. 7(b) shows such ex-
treme points (α∗, 1 − α∗). Substituting α∗ into (r − 1)pe =

(r − 1)(1 − α) and recalling that r = nc(c − 1), yields

(r − 1)pe = nc(c − 1) − 1

(nc − 1)(c − 1)
. (5)

Markers in the right end of Fig. 8(a) shows such extreme
points (α∗, (r − 1)(1 − α∗)). When the clique size c grows to
infinity, Eq. (5) leads to

(r − 1)pe
c→∞−−−→ nc

nc − 1
, (6)

which yields the value 2 when nc = 2, for example. This
explains why the rescaled critical infection probability curves
approach 2 when α is sufficiently large, as seen in Fig. 8(b).

Using our multitype branching process description of con-
tact tracking, not only can we unpick the interplay of clique
structure on the criticality of the process, which we have
explored in this section, but we can also estimate the expected
outbreak size. This is the focus of the following section. But
before proceeding, it is worth noting that integrating cliques
into network models increases the clustering coefficient. How-
ever, it is essential to recognize that increasing clustering
in networks can be done in different ways, and it may lead
to changes in other network properties, such as degree het-
erogeneity. Therefore, since clustering alone does not solely
dictate the epidemic threshold [24,26,27,55–63] or the com-
ponent size distribution [64] of network, running our SIRQ
dynamics on any clustered networks may not necessarily lead
to the same results we obtained here.

B. Subcritical outbreak sizes

Characterizing the spreading process described above also
provides access to methods for calculating quantities of in-
terest, such as the epidemic size, via the next-generation
matrix. We are interested in the outbreak size (the expected
total number of infected individuals in an outbreak) for a
given parameter set. We follow closely the method outlined
in Ref. [16], where they derived the expected epidemic size,
E , in the subcritical regime. We consider the contributions
for subtrees seed of each motif type (	z )—as well as the
expected number of offspring of each type from each motif
type, which has already been discussed in Sec. III A 3 via the
next-generation matrix. We also need to consider the number
of infected nodes contributed by each type, which will be
given by the vector 	I . The expected epidemic size, E , can be
found by solving the following two equations:(

I − MT
)
	z = 	I (7)

and

E = 1 + (	z 0) T M T 	z, (8)

where 	z 0 is the initial seeding of each motif type at the start of
the process, and I is the identity matrix. For example, consider
the case where we have each node as being part of three
cliques, where each clique contains three nodes (see Fig. 5),
the elements of 	z 0 are (3, 0, 0, 0)T and 	I are (0, 1, 2, 1)T . The
first element of 	z 0 is 3, as each node is a member of three
cliques, and, as this is the seed configuration, the contagion
has not spread to any other nodes, leaving all the other motif
types zero. We simply count the number of active nodes in
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FIG. 10. Outbreak size in the subcritical regime as a function of p
across the three network structures while considering the influence of
isolation probability, α. Nine curves are grouped into three sets (from
left to right) according to their isolation probabilities, with each set
containing three curves with α = 0.0, α = 0.25, and α = 0.5. These
groupings demonstrate the influence of α on outbreak size in the
subcritical regime. Increasing α or clique size reduces the outbreak
size, as calculated by Eq. (7) and Eq. (8) using the next-generation
matrix from mean-field approximation found in Sec. III B. Markers
represent the results of 50 000 simulations, while dotted lines depict
the results of the mean-field calculations presented in Sec. III A 2.

each motif for the elements of 	I . Referring again to Fig. 5,
types Z2 and Z4 both have one active node, and type Z3 has
two active nodes. We need to be careful not to double-count
nodes, and as such, we set the first element of 	I to zero. For
the full derivation, please refer to Ref. [16]. Using this, we
can now easily sweep through a parameter set to find the
relationship between p, the initial probability of infection, and
α, the probability of quarantine on the expected epidemic size
under our mean-field view of the disease process.

Looking at the qualitative behavior of the curves, we see
from Fig. 10 that as we increase p, naturally, the expected epi-
demic size rises; however, when we increase α, we see that the
average size of the outbreak decreases across all three network
topologies that we consider. Moreover, this effect is most
pronounced for networks with larger cliques, as this network
gives the quarantining behavior more opportunities to remove
possible infection paths via our mean-field approximation.
Note that the outbreak size in the subcritical regime does not
scale with the network size and decreases dramatically by
increasing α.

In the next section, we will present a complex contagion
approximation to contact tracing for calculating the epidemic
thresholds. The results of Fig. 10 also hold for this approx-
imation to the model, which is discussed in the next section.
Please refer to Appendix A for the complex contagion approx-
imation calculation for the expected cascade size.

IV. COMPLEX CONTAGION FORMULATION

Next, we will show that the model described in Sec. III A 2
is closely related to a SIR model, which allows the probability
of infection to change as a function of infection attempts.
In this related complex contagion model, we do not keep
track of isolated node states. Instead, we keep track of failed
infection attempts on the susceptible nodes. Since we know
that a contact tracing attempt preceded each infection attempt,

TABLE II. Nonzero elements of the next-generation matrix M4×4

in the complex contagion approximation for a 3-clique network. mi j

gives the expected number of Zi cliques from a Zj clique. As shown
in Fig. 5.

i, j mi j

1, 1 4p(1 − α)
1, 2 2p(1 − α)2

2, 1 2p(1 − α)[1 − p(1 − α)]
3, 1 p2(1 − α)2

4, 2 p(1 − α)2

we know there has been an equal number of infection and
contact tracing attempts. In this sense, each infection attempt
also carries a risk of isolation, and every attempt becomes
less likely to yield an infected node. This is in contrast to
the typical social complex contagion processes where each
infection attempt makes it more likely for the next one to
succeed.

We borrow the framework of the multitype branching pro-
cesses for complex contagion as introduced in Ref. [16],
where the infection state of the nodes characterizes motifs.
Notably, the model is the same apart from pk as has been pre-
viously defined in Ref. [16], where the probability of adoption
after k attempts is given by

pk = 1 − (1 − p)(1 − α)k−1. (9)

That is, the α parameter works exactly opposite to the contact
tracing here: The larger the α value, the larger the probabil-
ity that infection attempts beyond the first one are likely to
succeed.

In the SIR process with contact tracing each isolation fails
with probability 1 − α and a node is not isolated after k at-
tempts with probability (1 − α)k . If the person is not isolated,
then they have a probability of p being infected by an adja-
cent infected node. In total, the probability that a node gets
infected by a neighbor after k attempts, given that it is not yet
infected, is

p̂k = p(1 − α)k . (10)

This probability describes exactly the opposite behavior to
typical social complex contagion processes, where the prob-
ability of infection increases with the number of attempts.
Suppose we do not track whether the susceptible node is
quarantined or the infection has failed even though the node
was not quarantined. In that case, we can follow the method
and formulas given in Ref. [16] by simply replacing the
probability pk of Eq. (9) with p̂k from Eq. (10). In this pic-
ture, isolated and susceptible nodes are treated the same and
put into the susceptible compartment. We are not explicitly
tracking individuals in the Q compartment. However, we have
made the probability of infection a function of the number of
exposures as given by Eq. (10). In this approximation, we also
retain the infected and quarantined nodes QI in the susceptible
compartment S, which means that a Z1 cannot make a Z4

directly (Fig. 5).
Table II shows the nonzero elements of the next-generation

matrix for a 3-clique network, and Fig. 11 shows the result
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(a) (b)

FIG. 11. Comparison of the mean-field approximation intro-
duced in section Sec. II B with the complex contagion approximation
of Sec. IV. Panels are similar to the panels of Fig. 7. Here, markers
are the results of the simulations described in Sec. III A 2. Our simu-
lation results align with the bold curves, which are the results of the
mean-field approximations of Sec. III A. The thin curves result from
the complex contagion approximation introduced in Sec. IV, which
deviates slightly more from the other mean-field approximation when
α increases. The complex contagion approximation gives the lower
bound of critical transmission probability for all values of α.

of the complex contagion approximation when we set the
spectral radius of the new next-generation matrix to unity.
The results of this approximation are close to the simulations
and the mean-field solution presented in Sec. III A when the
quarantine probability α and clique size c are small. Larger α

and c values will lead to underestimated epidemic threshold
values for the infection probability p. As the critical curves
of the complex contagion are positioned below those of the
full contact tracing (see Fig. 11), it establishes the complex
contagion process as the lower bound (or estimate) for the
entire contact tracing process. With the complex contagion
formulation, the advancement in epidemic thresholds is less
pronounced. This is due to the slower upward trajectory of
the curves with increasing alpha, contrasting with the original
contact tracing formulation. So, the phenomenon of disease
spreading under contact tracing in networks with cliques can
be understood to be analogous to social complex contagion
but with the opposite and more minor effect. Intuitively, anal-
ogously to social complex contagion, this explains why it is
crucial to consider contact tracing in network models that
contain realistic group structures.

V. CONCLUSION AND DISCUSSION

In this work, we incorporate contact tracing into disease-
spread models on social networks, focusing on how local
group structures, modeled with cliques, impact the epidemic
thresholds and sizes. This model, contrasting with traditional
assumptions of fully mixed or treelike networks, demonstrates
greater efficacy of contact tracing in networks with cluster-
ing. Moreover, we show that disregarding group structure in
contact tracing is analogous to ignoring group structure in
complex contagion models where previous exposures increase
the chance of adoption or infection. This illustrates the possi-
ble benefits of contact tracing in real-world settings, especially
in the early stage of disease spread, where quarantining limits
the possible paths of infection that disease can take through a
network.

The dynamical model we used in this paper is an idealized
representation and, therefore, oversimplifies the complexities
of disease transmission and contact tracing. In actual social
situations, the implementation of contact tracing may vary
across different groups within the network, resulting in strong
effects on infection risk and threshold size. Further, our model
integrates factors related to contact tracing and isolation tim-
ing into a single parameter α. Contact tracing is always either
entirely successful or unsuccessful in this simplification. In
reality, contact tracing could be partially successful such that
the isolated individual passes on the infection to part of the
contacts that would have been infected without any inter-
vention. Additionally, there could be additional effects in
networks with cliques that are affected by the timing. Further
research is needed to understand how quarantining measures
impact epidemics on more realistic contact networks with
contact tracing and how outbreak sizes are distributed in such
settings.

The details of the epidemic model itself could also im-
pact the effectiveness of contact tracing in networks with
cliques. For example, asymptomatic individuals can be cru-
cial in disease spread as they can unknowingly transmit
the infection and therefore do not lead those people being
contact traced. However, in the presence of social groups,
both the asymptomatic individuals and the people infected
by them can be isolated through indirect connections, po-
tentially alleviating the problems caused by asymptomatic
individuals. Similarly, one could incorporate a noncontagious
exposed phase using the SEIR model [34,46] or various
other complications that would make the models more re-
alistic, such as temporal inhomogeneities of the contact
networks [65–67].

Our model’s strength lies in its simplicity and general
modeling practicality. It encapsulates identifying infected
individuals, alerting their contacts, and isolating those po-
tentially exposed within a single parameter, denoted α. This
versatile model can be applied to various interventions akin
to contact tracing. For instance, social distancing could theo-
retically fit into this model if we consider exposed individuals
maintaining a large-enough physical distance with probability
α from all their peers, thus mirroring the concept of self-
quarantine. While social distancing may be regarded as a
form of partial or complete self-isolation, the essence of both
practices—and of quarantining—is fundamentally similar. Al-
though these public health terms are often finely distinguished
in specific contexts, the underlying principles governing these
interventions are consistent.

In summary, our results highlight the importance of con-
sidering realistic social network structures when modeling
epidemics and interventions. Our model is deliberately sim-
plistic and is used to isolate key insights. The key conclusions
we draw are as follows: (1) contact tracing is more efficient in
social networks with groups than one would expect based on
the treelike models, (2) the effect of groups is more prominent
if the groups are larger, and if the contact tracing is more effi-
cient, and, finally, (3) SIR spreading under contact tracing can
be approximately understood as a complex contagion process
where multiple exposures reduce the infection probabilities.

This study’s simulations and numerical computations are
publicly available [68].
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FIG. 12. Outbreak size in the subcritical regime as a function of
p across the three network structures while considering the influence
of isolation probability α. Nine curves are grouped into three sets
(from left to right) according to their isolation probabilities, with
each set containing α = 0, α = 0.25, and α = 0.5. These groupings
demonstrate the influence of α on outbreak size in the subcritical
regime. Increasing α or clique size reduces the outbreak size, as
calculated by Eq. (7) and Eq. (8) using the next-generation matrix
from mean-field approximation found in Sec. IV. Markers represent
the results of 50 000 simulations, while dotted lines depict the results
of the mean-field calculations presented in Sec. III B.
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APPENDIX A: EXPECTED EPIDEMIC SIZE
FOR THE COMPLEX-CONTAGION PROCESS

We can calculate the expected epidemic size for a multitype
branching process in the subcritical regime, as explained in
Sec. III B. Here, we examine the expected epidemic sizes for
the complex contagion process. To do this, we need only to
replace the next-generation matrix from the mean-field de-
scription in Sec. III A 3 with that of the complex-contagion
described by Eqs. (7) and (8). As with the results from
Sec. III B, we find good agreement when comparing the re-
sulting curves for the expected epidemic (cascade) size, E , to
simulation results in Fig. 12. When examining the qualitative
behavior of the curves for expected epidemic size, we see
from Fig. 12 that as we increase p, as expected, the aver-
age epidemic size increases. However, increasing α decreases
each network’s average outbreak size. Moreover, this effect

is most pronounced for networks with larger cliques, as this
network gives the quarantining behavior more opportunities
to remove possible infection paths via the complex-contagion
approximation to the process.

APPENDIX B: EFFECTIVE REPRODUCTION NUMBER

We investigate the role of contact tracing in networks with
cliques and its effect on the effective reproduction number, Re.
Our analysis reveals that Re reduces in response to increases
in the tracing probability, α, and variations in the transmission
probability, p. To find Re in our simulations, we run our
discrete-time dynamics and count, on average, how many peo-
ple have been infected in each time step by a typical infected
node. In different trials, we start with a single infected node,
chosen uniformly randomly in the network. We follow how
many susceptible nodes it infects, even counting the isolated
ones, such as the case in Fig. 3(a). For finite networks, this
means that we need to run the simulation long enough for
the process to stabilize but short enough that the ratio of the
infected nodes to the network size remains close to zero. If
no new infection happens in a generation, then the disease
has died out. The total number of new infections caused by
the seed node would be the individual reproduction number
of that node, and we report it as the effective reproduction
number of generation t = 1. In the next step, we do the same
for the resultant active (infected but not in quarantine) nodes
generated by the seed node, one-after-another. Notice that
from this step on, a neighbor of an active node may be in
quarantine because of its interaction with other neighbors, not
with the one it is receiving the infection from, such as the
case shown in Fig. 3(b). In these cases, the active node cannot
infect the node that has been in quarantine via other nodes.
When we are done with all the active nodes of this generation,
we report the average number of individual reproduction num-
bers of these nodes as the effective reproduction at generation
t = 2. The process can be continued for more generations,
depending on the network size. For large-enough networks,
the ensemble average of effective reproduction number over
different trials starts to stabilize from generation t = 3 in the
parameter ranges we have explored, indicating that its value
remains constant for some time, depending on the network’s
size. Hence, we consider this stabilized value at t = 3 as the
effective reproduction number Re.

We observe that in networks with cliques of size r = 6 and
c = 2, 3, 4, and transmission probabilities of p = 1, 0.75, 0.5,
larger cliques correspond to a reduced need for quarantine
measures to bring Re down to 1. This relationship between
clique size and the required intensity of quarantine efforts
to control the spread is illustrated in Fig. 13, which aligns
with our theoretical predictions of Sec. III A and simulations
described in Sec. III A 2.

APPENDIX C: REPRODUCTION NUMBER
AND THE NEXT-GENERATION MATRIX

We will next give additional details on using the leading
eigenvalue of the M matrix as the reproduction number Re.
Two specific issues were only briefly discussed in the main
text: why does the leading eigenvalue of the reducible matrix
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(a) (b) (c)

FIG. 13. How contact tracing on clique network reduces the
effective reproduction number Re by increasing α. Effective repro-
duction number for different networks with cliques with r = 6 for
transmission probabilities (a) p = 1.0, (b) p = 0.75, and (c) p = 0.5.
The dotted lines are from the mean-filed calculations introduced
in Sec. III A, and the markers are from Monte Carlo simulations
described in Sec. III A 2. The yellow dashed lines, which overlap
with the red curves with stars, represent Eq. (1), which match the
cases where c = 2 (treelike networks). The larger the transmission
probability, the larger the differences between the curves of different
networks with cliques. The larger the clique size, the less effort we
need to quarantine people since networks with larger cliques reach
Re = 1 for lower values of α.

M tell us about the critical behavior, and why can the leading
eigenvalue be interpreted as Re?

The argument for the leading eigenvalue of the reducible
matrix M determining the criticality is very similar to the one
made in Sec. IV A 2 of Ref. [16]. We can divide the transi-
tions between Z states into two categories: ones that describe
changes within a clique and ones that describe the infection
arriving in a clique that previously only had susceptible nodes.
The transitions within cliques form a directed acyclic graph
(DAG), because the SIRQ process always moves in one di-
rection, i.e., from susceptible to infected or removed or from
infected to removed. DAGs can always be put into upper (or
lower) triangular form. Every motif that has at least one sus-
ceptible and one infected node will have a transition to the Z1

state, which has one infected node in an otherwise susceptible
clique. We can permute the matrix M by collecting these
motifs to a block B1. These motifs form a strongly connected
block because Z1 is the root of the DAG, and the block is thus
irreducible. The remaining states are still triangular, where
each motif forms its own block Bi, so in total, we have the
matrix in a normal form. Further, the motifs that do not belong
to the block B1 are dead ends as they cannot produce any
offspring with infected nodes.

The method described above can always be used to write
the reducible matrix M in its normal form such that blocks
Bi fill the upper triangle part of it. Since M is non-negative,
the spectrum of M is the union of the spectra of the Bi [51].
Here the Bi has zero eigenvalues for i 
= 1, and the largest
eigenvalue of M, i.e., the Perron root, is the same as the largest
eigenvalue of B1 which is an irreducible matrix. Given that we
initialize our spreading process sparsely such that there are
only Z1 motifs in the network in the beginning (in addition
to the fully susceptible ones we do not track), the long-term
dynamics will always be governed by the leading eigenvalue
of B1 (and therefore M) which [16].

The Re correspondence to the leading eigenvalue might
initially seem nonintuitive, considering that some transitions

FIG. 14. Number of motifs and the number of nonzero elements
of M for given clique size c.

create multiple infected nodes at one step. This indicates that
one needs to multiply the effects of transitions by the number
of newly infected nodes in them to compute the expected
number of newly infected nodes a typical infected node pro-
duces. However, this is not necessary. A key observation here
is that the number of Z1 motifs is directly proportional to the
number of infected nodes in the network. Every time a node is
infected, it will create nc − 1 of new Z1 motifs, where nc is the
number of cliques each node belongs to. In the next time step,
those motifs transition into one of the other motif types, and
the infected individuals become removed, so the number of
Z1 motifs is always updated to be nc − 1 times the number of
infected nodes. That is, at time step t , the number of infected
nodes is It = zt

1/(nc − 1), where zt
1 is the number of motifs

z1 at time t . Given that we are at the steady state, zt is the
leading eigenvector, i.e., zt+1 = Mzt = λzt , and zt+1

1 = λzt
1,

which means that It+1 = λIt .

APPENDIX D: AUTOMATIC GENERATION
OF THE NEXT-GENERATION MATRICES

We show how the next-generation matrix can be con-
structed for any clique size c by an algorithm described here.

FIG. 15. Schematic of the impact of the short-time quarantine.
We track the number of susceptible, infected, and recovered nodes
for the three main cliques we consider. we can note that the first
instance where a previously quarantined susceptible node can meet
an infected node appears in the 4-clique.

024303-12



EFFECTIVENESS OF CONTACT TRACING ON NETWORKS … PHYSICAL REVIEW E 109, 024303 (2024)

FIG. 16. Differences in the critical regions obtained from the
largest eigenvalues of the mean matrix for the original quarantine
time (labeled Q) and the short quarantine time (labeled SQ). Inset
shows a subset of parameter values from which the difference be-
tween the two quarantine times is more apparent.

The construction is done by going through every motif and
considering the transitions and expected values leading out
of that motif. That is, we go one motif at a time, starting
from the one with only a single infected node and the rest
of the nodes susceptible, constructing the motifs one time and
stepping away from that motif and the expected number of
new motifs produced.

(a)

(b)

(c)

FIG. 17. Phase transitions from a disease-free equilibrium to an
endemic state for 2-, 3-, and 4-clique networks with degree 6 as intro-
duced in Sec. II A. Nodes in quarantine can leave the Q compartment
at every time step with probability α′ = 0.4. [(a)–(c)] The outbreak
size E , normalized to the network size, is shown on the vertical
axis for when (a) α = 0 (no contact tracing), (b) α = 0.25, and (c)
α = 0.5, from top to bottom respectively. Note that the transition
points are shifted slightly to the right for larger clique sizes, c,
even when there is no contact tracing (α = 0), but this difference
is substantially amplified for larger α values. Results are based on
Monte Carlo simulations introduced in Sec. III A 2 and Appendix E.

FIG. 18. Life stages or diffusion patterns of a 4-clique. Similar
to Fig. 5 for a 3-clique. We can generate the next-generation matrix
for any clique size with our code introduced in Appendix D.

We can note that each clique motif is uniquely defined by
the number of nodes in each compartment; that is, we define
each unique clique motif by Zi = (nS, nI , nR) as one that has
nS susceptible nodes, nI infected nodes, and nR removed (ei-
ther recovered or quarantined) nodes. Referring back to Fig. 5,
where a 3-node clique has four possible clique motifs and, for
example, Z1 = (2, 1, 0) represents two susceptible nodes, one
infected, and none recovered. Initially, a general clique with
c nodes will start with the clique motif Z1 = (c − 1, 1, 0).
Given the probability of the susceptible nodes becoming in-
fected, we can calculate the transition probability from Z1 to
either Z2, Z3, or inactive cliques with no new infected nodes.
We can calculate the possible transition probability between
all clique motifs in this fashion. Once we have the transition
probabilities, it is easy to calculate the expected number of
newly infected nodes from each clique motif transition and,
therefore, calculate the mean matrix.

All this translates into the following general pipeline for
processing any clique size we might wish, where we pro-

TABLE III. Nonzero elements of the next-generation matrix M
for a 4-clique network as explained in Sec. III A 3. mi j gives the
expected number of Zi cliques from a Zj clique, as shown in Fig. 18.
nc is the number of cliques of size c = 4 which for an r-regular
c-clique satisfies the identity nc(c − 1) = r.

i, j mi j

1, 1 3p(−αnc + α + nc − 1)

1, 2 2p(−αnc + α + nc − 1)

1, 3 p(1 − α)(nc − 1)[(α − 1)(p − 1) + 1]

1, 5 −p(α − 1)(nc − 1)

2, 1 −3p(α − 1)3(p − 1)2

3, 1 3p2(α − 1)3(p − 1)

4, 1 −p3(α − 1)3

5, 1 −6αp(α − 1)2(p − 1)

5, 2 −2p(α − 1)2(p − 1)

6, 1 3αp2(α − 1)2

6, 2 p2(α − 1)2

7, 1 3α2 p(1 − α)

7, 2 2αp(1 − α)

7, 3 p(1 − α)[(α − 1)(p − 1) + 1]

7, 5 p(1 − α)
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cess the clique motifs one at a time with the following
rules:

(a) If the motif Zi has no infected nodes, then we do
nothing.

(b) If it has one or more infected nodes, then we then cre-
ate transitions to new motifs Zj = (nS + δnS, nI + δnI , nR +
δnR), for all δnI ∈ {1, . . . , nS}, δnR ∈ {0, . . . , nS − δnI}, and
δnS = −δnI − δnR.

(c) If those new motifs have not been processed before,
then they are added to a queue for being processed.

The transition probabilities mji can then be computed for
j 
= 1 by(

nS

δnI

)(
nS − δnI

δnR

)
p(nI )δnI [1 − p(nI )]nS+δnS

· αδnR (1 − α)nS−δnR , (D1)

where the probability of nI nodes causing a node to get in-
fected is

p(nI ) =
nI −1∑
k=0

(α − 1)k (1 − p)k p. (D2)

The element m1i can be computed by

m1i = (nc − 1)
∑
j 
=1

δnI ( j, i)mji, (D3)

where the value δnI ( j, i) is the value of δnI in the transition
from Zi to Zj .

This procedure will yield a sparse matrix, M, where the
size of the matrix and the number of nonzero elements grow
as shown in Fig. 14. This process allows us to automatically
generate the mean matrices for any clique size we wish to ex-
amine efficiently. See Ref. [68] for the Python implementation
of this process.

APPENDIX E: IMPACT OF SHORTENED
QUARANTINE TIME

In the main text, we assumed that quarantine was forever,
or effectively longer than the length of time a clique could
have at least one infected node to propagate the infection.
Here we can consider this assumption’s effect on the main
three network topologies that we consider, where c = 2, 3,

and 4, where a node is only quarantined for a single time
step. This means a susceptible node placed in the quarantine
compartment is returned to the susceptible compartment after
one time step.

For the 2-clique case, see Fig. 15(a). This will not have any
effect, as the clique only represents links, and any susceptible
quarantined node will not have any infected neighbors in the
following time step. For the 3-clique case, see Fig. 15(b).
We have the same situation as the 2-clique case. In any case,
where the node is infected, and a susceptible node is in the
quarantine compartment, in the following step, there will not

TABLE IV. Nonzero elements of the next-generation matrix M
in the complex contagion approximation for a 4-clique network. mi j

gives the expected number of Zi cliques from a Zj clique.

i, j mi j

1, 1 3p(nc − 1)

1, 2 −2(nc − 1)[(α − 1)(p − 1) − 1]

1, 3 (nc − 1)[(α − 1)3(p − 1)2 + 1]

1, 5) (nc − 1)[(α − 1)2(p − 1) + 1]

2, 1 3p(p − 1)2

3, 1 3p2(1 − p)

4, 1 p3

5, 2 2(1 − α)(p − 1)[(α − 1)(p − 1) − 1]

6, 2 (αp − α − p)2

7, 3 (α − 1)3(p − 1)2 + 1

7, 5 (α − 1)2(p − 1) + 1

be any active infected node to infect the returned susceptible
node. The 4-clique is the only case where the shortened
quarantine comes into play. This clique size has one possible
infection path, illustrated in Fig. 15(c), that can result in an
additional infection for this short quarantine time. If we were
to readjust the mean matrix to account for this and recalculate
the critical regions, see Fig. 16, then we can see that it is hard
to discern any difference in the overall behavior. If we concern
ourselves with the inset of Fig. 16, which concentrates on a
smaller parameter region, then we can see that there is indeed
a thin band of parameters for which the new quarantining
behavior is super critical, but the original system is not. This
difference is so small due to the presence of only a single set
of low-probability events in which a returned susceptible node
plays any role, and as such, our overall results are valid.

To demonstrate that the exit of nodes from the quarantine
Q compartment does not significantly alter the key epidemic
outcomes we focus on, we have adjusted the model described
in Sec. III A 2. In this modified model, at each time step, nodes
in quarantine have a probability α′ of leaving the Q compart-
ment. Consequently, nodes from the QS and QI compartments
transition to the S and R compartments, respectively, with
probability α′. This adjustment was made to reaffirm the re-
sults previously presented in Fig. 4(a), specifically to show
that these changes do not affect the epidemic thresholds of
interest. Figure 17 illustrates this scenario with α′ = 0.4.

Next-generation Matrices for 4-cliques

Figure 18 shows the life stages of a 4-clique. For this case,
the next-generation matrix according to the mean-filed and
complex contagion approximations are given by Table III and
Table IV, respectively.
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Contact tracing via digital tracking applications installed on mobile phones is an important tool for controlling
epidemic spreading. Its effectivity can be quantified by modifying the standard methodology for analyzing
percolation and connectivity of contact networks. We apply this framework to networks with varying degree
distributions, numbers of application users, and probabilities of quarantine failures. Further, we study structured
populations with homophily and heterophily and the possibility of degree-targeted application distribution. Our
results are based on a combination of explicit simulations and mean-field analysis. They indicate that there
can be major differences in the epidemic size and epidemic probabilities which are equivalent in the normal
susceptible-infectious-recovered (SIR) processes. Further, degree heterogeneity is seen to be especially important
for the epidemic threshold but not as much for the epidemic size. The probability that tracing leads to quarantines
is not as important as the application adoption rate. Finally, both strong homophily and especially heterophily
with regard to application adoption can be detrimental. Overall, epidemic dynamics are very sensitive to all of
the parameter values we tested out, which makes the problem of estimating the effect of digital contact tracing
an inherently multidimensional problem.

DOI: 10.1103/PhysRevE.105.044313

I. INTRODUCTION

Until effective vaccines are widely deployed in a pandemic
era, carefully timed nonpharmaceutical interventions [1] such
as wearing face masks [2], school closures, travel restrictions,
and contact tracing [3–7] are the best tools we have for curb-
ing the pandemic. Contact tracing is an attempt to discover
and isolate asymptomatic or presymptomatic (exposed) indi-
viduals. In the absence of herd immunity, contact tracing is
a potent low-cost intervention method since it puts people
into quarantine where and when the disease spreads. There-
fore, it can have a significant role in containing a pandemic
by relaxing social-distancing interventions [8], providing an
acceptable trade-off between public health and economic ob-
jectives [9,10], developing sustainable exit strategies [11,12],
identifying future outbreaks [13], and reaching the “source”
of infection [14].

Thanks to the emergence of low-cost wearable health
devices [15–22] and mobile software applications, digital
contact tracing can now be deployed with higher precision
without the problems of manual contact tracing, such as the
tracing being slow and labor intensive or people’s hesitation
to give identifying data about their contacts due to blame,
fear, confusion, or politics. On the other hand, smartphones
and wearable devices also offer continuous. access to real-
time physiological data, which can be used to tune other
nonpharmaceutical or pharmaceutical strategies. Modern apps
enable us to monitor COVID-19 symptoms [23–25]; iden-
tify its hotspots [26]; track mosquito-borne diseases such as
Malaria, Zika, and Dengue [27,28]; and detect microscopic
pathogens.

In both forms—manual [4,5,29–37] and digital [38–44]—
contact tracing has been commonly considered as an effective
strategy and different empirical data sets have validated this
claim in short-time population-based controlled experiments
[38,40]. It has been estimated that for every percentage
point increase in app-users, the number of cases can be re-
duced by 2.3% (in statistical analysis) [45]. However, such
a linear view of the benefits of the app usage is likely too
simplistic and ignores the complexities disease spreading, es-
pecially in heterogeneous populations [46–49]. For instance,
degree-heterogeneity in the contact network [50] can alter
epidemiological properties in the form of variance in final
outbreak size [51], vanishing epidemic threshold [49,52], hi-
erarchical spreading [53], strong finite-size effects [54], and
universality classes for critical exponents [55]. Moreover, the
existence of superspreaders dictates the extent to which a
virus spreads in a bursty fashion [56–58], especially when
there is high individual-level variation in the number of sec-
ondary transmissions [53,59,60]. Therefore, to evaluate the
effectiveness of contact-tracing, degree-heterogeneity and app
adoption of superspreaders [61,62] should be taken into ac-
count. Note that in some parameter settings, contact tracing
may not be effective enough [8,63,64].

A potentially important factor in the effectiveness of the
contact tracing apps is related to how the app-using and non-
app-using populations are mixed. Several studies have shown
that similar people with similar features are more likely to
be in contact with each other than with people with different
types of features. This phenomenon is known as homophily
[65–67]. It has been reported in app adoption directly [40]
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and indirectly through correlation in app adoption and other
features exhibiting homophily, such as jobs, age, income, and
nationality [68–70]. Therefore, the fraction of population that
adopts the app is not the only important factor for reducing
the peak and total size of the epidemic but also the amount of
homophily in app adoption can potentially have a significant
role.

Since the World Health Organization has declared the
COVID-19 outbreak as a Public Health Emergency of Inter-
national Concern, network scientists have developed different
approaches toward analyzing epidemic tracing and mitigation
with apps. Using the toolbox of network science, different
groups have investigated the effectiveness of contact tracing
based on the topology and directionality of contact networks
[14,44,71–77]. Recently, a mathematical framework aimed at
understanding how homophily in health behavior shapes the
dynamics of epidemics has been introduced by Burgio et al.
[78]. This study expanded the model of Bianconi et al. [71]
and computed the reproduction number and attack rate in a
homophilic population using mean-field equations.

Our study investigates the effect of varying app coverage
on the epidemic’s threshold, probability, and expected size in
homogeneous and heterogeneous contact networks with and
without homophily or heterophily in app adoption. Further,
we explore the effect of distributing the apps randomly and
preferentially to high-degree nodes [71] in these scenarios.
Our main focus is on the epidemic threshold and the final
size of the epidemics. Therefore, we assume the dynamics of
the epidemic to be governed by the simple SIR model [50].
This model can be easily mapped to a static bond-percolation
problem [79,80] so that the epidemiological properties can be
measured based on the topological structure of the underly-
ing network [50,73,81–84]. Note that, more complex disease
transmission models, such as SEIR models in which there
is an infected-but-not-contagious period E, are also covered
by this formalism [79,85]. The difference in the spreading
framework with the app to the normal one is that the infection
cannot spread further if it passes a link between two app-users
(app-adopters). That is, the infection process model needs to
include the memory of the type of node it is coming from. We
then extend the percolation framework such that we can add
memory [86,87] to it in order to keep track of the infection
path. This leads to the observation that the epidemic size is
not the same as the epidemic probability as it would be in this
model without the app-users [88].

Our results are largely based on mean-field-type calcu-
lations of the percolation problem, which are confirmed by
explicit simulations of SIR epidemic process and measure-
ments of component sizes in finite networks. Our findings
show that (1) the number of app-users has a direct effect on
the epidemic size and epidemic probability and the difference
between these two observables is larger in high-degree tar-
geting strategy; (2) epidemics can be controlled to a much
better degree in the high-degree targeting strategy; (3) even
though degree-heterogeneity can strongly affect or even elim-
inate the epidemic threshold, high-degree targeting strategy
can compensate this effect and increase the threshold signifi-
cantly; (4) increasing heterophily from random mixing always
increases the outbreak size and lowers the epidemic threshold;
(5) increasing homophily does the opposite until an optimum,

that is below the maximum homophily case, is reached; and,
finally, (6) the probability of contact tracing succeeding in
preventing further infections is not as crucial as the fraction of
app-users, but can still have significant effects on the epidemic
size and epidemic threshold. The only exception is when the
apps are distributed to heterogeneous networks with the high-
degree targeting strategy.

II. MODELLING APPROACH

A. Disease model and connection to percolation

We employ a SIR disease model on networks with ad-
ditional dynamics given by the disease interactions in the
presence of the disease tracking application. In the model,
without the tracking application, an infected (I) node will
eventually infect a neighboring susceptible (S) node with
a transmission probability p independently of other infec-
tions. The simulations are performed with a model where
the infected nodes try to infect their susceptible neighbors
with independent Poisson processes with rate β and go to
the removed state (R) after fixed time τ . The fixed recov-
ery time ensures that every infected individual, regardless of
app adoption, can infect a susceptible neighbor independently
with a transmission probability p = 1−e−βτ [79,89]. These
assumptions allow us to study the SIR processes using compo-
nent size distributions of undirected networks where parts of
the links are randomly removed [79,85,88–90]: An epidemic
starting from a single node can reach any other node exactly
when there is a path of such transmitting links connecting
them, i.e., they are in the same component in a network
where the potential contact links are removed with proba-
bility p. Thus, the epidemic threshold, epidemic probability
and epidemic size can be read from percolation simulations
[79,85,88–90] (see Sec. II B). Note that without fixed recovery
time, the presence of spreading paths through neighboring
links would not be independent, and this would not be a bond
percolation problem in an undirected network where edges
are removed independently. However, the epidemic threshold,
final epidemic size, and the expected outbreak size below the
epidemic threshold would still be correctly predicted by this
methodology [88,89].

We model the effect of applications to the disease spread-
ing as follows: If an app-user infects another app-user, then
that second node will get infected but will quarantine them-
selves with probability papp. The quarantined user will have
no further connections that would spread the infection they
received from the other app-user. A substantial deviation from
a realistic spreading case in our model is that the quarantine
does not prevent the disease spreading to the quarantined node
through a third node. That is, we only model the primary
infection path from the other app-user causing the alarm but
do not stop the possible concurrent secondary infection paths
from a third node. Strictly speaking, this simplification in the
modeling returns a lower bound on the effectiveness of the
app-based contact tracing, but given that our contact network
models are sparse random graphs (see Sec. II C) that do not
contain local loops, the difference can only be observed if a
large enough fraction of the population is infected at the same
time. Critically, this does not affect the epidemic threshold
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FIG. 1. (a) Original contact network with app-users marked with
the oval symbol. (b) The normal largest component, after the dotted
links have been removed in the percolation process at random. When
apps are working perfectly, links between a pair of app-users are
removed with probability papp = 1 and other links are removed with
probability p. (c) An example for a path of infection: The second app-
user can be infected; therefore, it must be included in the outbreak
size. (d) Extending the giant component to include the secondary
app infections. The second infected app-adopter is added to the giant
component with transmission probability p.

but could have implications for parameter regions where the
epidemic size is large, depending on the quarantine durations.

The SIR spreading process can be mapped to a slightly
more complicated percolation problem in the presence of apps
[44,71]. To model app-user quarantines, one needs to delete
the links between two app-users with the probability of suc-
cessful quarantine due to the app, papp. This ensures that we
ignore the infection paths through two app-users when one
of them is successfully quarantined. However, removing these
links also removes the second app-user from the component,
even though they are infected. To correct this, we need first
to find the network components and then extend them by
including all app-users outside of the component connected
to another app-user (and considering the probability p that
the link is kept). See Fig. 1 for an illustration of this process,
which leads us to two definitions of components: normal and
extended.

B. Components, epidemic size, and epidemic probability

In the SIR model without apps, the component size distri-
bution can be used to describe the late stages of the epidemics
approximately. Given an initially infected node, the size of the
component it belongs to determines the size of the outbreak.
In an infinitely large population, we say that an outbreak is
an epidemic if it spans a nonzero fraction of the population.
The relationship between percolation and the final epidemic
size is straightforward if the population is large enough that it
can be approximated with an infinite undirected transmission
network [79,88]. In this case, the percolation threshold gives
the epidemic threshold and below it, an outbreak always spans
only a zero fraction of the population because all the com-
ponents are of finite size. Above the percolation threshold,

there is a single giant component that spans smax = Smax/N
fraction of the nodes. This is equivalent to both the size of
the epidemic, given that there is one, and the probability that
there is an epidemic starting from a single initially infected
node [79,88]; smax is the fraction of nodes that can be reached
from the giant component (epidemic size) and the probability
that randomly chosen node belongs to the giant component
(probability of the epidemic). The expected epidemics size in
a fraction of eventually infected nodes is, in this case, given
as s2

max.
When we introduce apps to the spreading process, the

equivalence of the epidemic size and epidemic probability
breaks down. Both the normal component and the extended
component become important. The component size still gives
the probability that there is an epidemic, as is the case with-
out the apps. However, the epidemic size, given that there is
one, is now given by the extended component size s′

max. The
expected epidemic size is then given by smaxs′

max.
Similar relationships hold for finite-size systems. For ex-

ample, the expected size of the epidemics from single source
becomes

〈E〉 =
∑

c

Sc

N
S′

c, (1)

where Sc is the normal size and S′
c is the extended size of

the component c and N is the total number of nodes. In this
formula, Sc/N gives the probability that the initially infected
node is in the component c and S′

c gives the size of the
epidemic if a node in component c is chosen.

C. Network models

We aim to study how the network topology, amount, and
distribution of app-users over the network affect the epi-
demics. We study networks with degree distribution P(k) and
average degree 〈k〉 such that each node is an app-user with
probability πa and not an app-user with probability 1 − πa.
We distribute the app-users with one of two strategies: (1)
uniformly at random or (2) by distributing the apps in the
order of their degree such that the high-degree nodes get the
apps first.

We use three different models to generate the network
topology. We use (i) Poisson or Erdős-Rényi (ER) random
graphs [91] to model homogeneous contact patterns and (ii)
scale-free networks generated with the Chung-Lu model (CL)
[92,93] to model heterogeneous networks. In generation of CL
networks, the expected degree of each node is drawn from a
continuous power-law distribution P(k) ∝ k−3 such that the
minimum expected degree is set to a value that gives us the
expected average degree 〈k〉 of our choice. Given a sequence
of expected degrees W = {w1,w2, . . . ,wn}, Miller algorithm
[94] assigns a link between node u and node v with probability
puv ∝ wuwv . This algorithm returns a network without multi-
ple links with almost the same power-law degree distribution.

We model homophily (and heterophily) with regards to
apps usage with (iii) a modular network model (MN) intro-
duced in Refs. [95,96] with two groups of nodes: app-users
and non-app-users. This model starts with a degree sequence
produced either by the ER or CL models and connects
the nodes depending on which groups they belong with
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probabilities πaa (app-user to app-user), πan (app-user to
non-app-user), πna (non-app-user to app user), and πnn (non-
app-user to non-app-user). We only need to fix one of these
probabilities, πaa, and other types of links are formed with
probabilities πan = 1 − πaa, πna = πa

1−πa
(1 − πaa ), and πnn =

1 − πna = 1−πa−πa (1−πaa )
1−πa

, where πa is the probability that a
person is an app-user and the second equality comes from
the balance between the number of links from app-users
to non-app-users and from non-app to app-users, that is,
πaNπan〈k〉 = (1 − πa)Nπna〈k〉. The numerical simulations of
the MN work by randomly choosing a group for half edges
with the given probabilities and matching them to each other
uniformly randomly. This can lead to self-links and mul-
tilinks, which these are discarded after the randomization
procedure.

While there is no correlation between the app adoption
status in homogeneous (ER) or heterogeneous (CL) networks
above, in the third model (MN), the existence of homophily or
heterophily of the network structure is determined by compar-
ing πaa to its value for the neutral case with no homophily or
heterophily. In the absence of homophily or heterophily, πaa =
ηa, where ηa is the ratio of the number of links that emerge
from app-users to the total degree; this is because if the nodes
were connected purely at random, then the probability that a
link from an app-user connects it to another app-user equals
the ratio of the number of stubs that app-users have to the total
number of stubs, i.e., ηa. In the case of a random selection
of app-users ηa = πa, since both app-users and non-app-users
have on average the same number of stubs and the fraction
of stubs that app-users have equals the fraction of app-users
in the system, i.e., πa. In a high-degree targeting strategy,
the number of stubs that app-users have on average is larger
than that of non-app-users. In that case, ηa can be calculated
from the degree distribution (see Sec. III A). When πaa > ηa,
app-users are more likely to be connected to each other than in
a network in which a fraction of ηa of them being uniformly
randomly placed. On the other hand, when πaa < ηa nodes
are more likely to be connected to the nodes of the other
type (heterophilic network). In the heterophilic regime, for
some pairs of (πaa, πa), networks are not realizable because
of the constraints explained in Sec. III A. The white region in
Fig. 6 shows the region of πaa-πa plane that networks cannot
be created in that parameter space.

III. ANALYTIC AND SIMULATION METHODS

The epidemics are studied here with various methods of
approximation. We employ analytical computations based
on mean-field-type approximations to efficiently analyze our
models’ wide parameter space and provide explicit formulas
for our main observable quantities. Here an approximation
based on branching processes [97] can be used to deter-
mine the critical point. Following Ref. [44], a more detailed
calculation based on percolation arguments will give us the
component sizes which can be related to the final epidemic
size and epidemic probability. Simulations of the network
connectivity then complement these mean-field approxima-
tions. Finally, we explore the accuracy of the mean-field
approximations via explicit simulations of the SIR model.

A. Giant component size from consistency equations

To study the behavior of the epidemic dynamics, we
form consistency equations for the giant component size. In
Ref. [44] the governing equations for the size of the epidemic
and the transition point were obtained for the case of random
networks in the absence of homophily. Here we derive the
analytical results for the more general case of the spectrum of
heterophilic to homophilic networks, a special case of which
is the nonhomophilic networks of Ref. [44]. We consider
that app-users and non-app-users might be connected together
with a pattern different from pure random chance using the
MN model.

We aim to write the self-consistent equations for the proba-
bility, un, that following a link to a non-app-user does not lead
to the giant component and probability ua, that following a
link to an app-user does not lead to the giant component. Us-
ing these probabilities, the relative size of the giant component
s and the relative size of the extended giant component s′ can
be obtained, where s is, in fact, the fraction of nodes infected
through non-app-users, while s′ also includes individuals who
caught the infection through an app-user before they could
quarantine themselves (see Sec. III C 1).

We need to know the probability un (ua), that a randomly
chosen link leading to a non-app-user (app-user) is not in the
giant component. The probability that a non-app-user (app-
user) is not connected to the giant component via a particular
neighboring node is equal to the probability that that non-app-
user (app-user) is not connected to the giant component via
any of its other neighbors. A non-app-user is connected to
another non-app-user with probability πnn = 1 − πna and to
an app-user with probability πna. So, a link leading out from a
non-app-user does not lead to the giant component if it leads
to another non-app-user that is not in the giant component
[which happens with probability (1 − πna )un] or an app-user
that is not in the giant component (which happens with proba-
bility πnaua). That is, the total probability for following a link
out from a non-app-user not leading to the giant component is
un→ = (1 − πna )un + πnaua. Since the degree of neighboring
nodes is disturbed according to the excess degree distribution
qk , the probability that a non-app-user that is encountered by
following a link to it is not connected to the giant component
via any of its k neighbors is

∑
k qkuk

n→. This probability is,
by definition, un, leading to the self-consistent equation below
for un:

un = g1[(1 − πna )un + πnaua], (2)

where g1 is the generating function for excess degree distribu-
tion [50]. To find ua, we can use the same treatment, except
that we should consider how app-app connections depend
on the probability of success in contact tracing [44]. If papp

is the probability the apps work as expected, then 1 − papp

is the probability that the app-user does not effectively quar-
antine after being been in contact by an infectious app-user.
Therefore, ua can be expressed as the self-consistent equa-
tion below:

ua = g1{(1 − πaa )un + πaa[papp + (1 − papp)ua]}. (3)

Note that πna is determined by the free parameters πa and
πaa as we already showed that πna = πa

1−πa
(1 − πaa ).
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Given un and ua, the average probability that a node be-
longs to the giant component, or equivalently the fraction
of the network occupied by the giant component, is now
given by:

s = 1 − (1 − πa)g0[(1 − πna )un + πnaua]

−πag0{(1 − πaa )un + πaa[papp + (1 − papp)ua]}, (4)

where g0 is the generating function for degree distribution. We
can approximate s′ by writing:

s′ = 1 − (1 − πa)g0[(1 − πna )un + πnaua]

−πag0[(1 − πaa )un + πaaua)], (5)

where, as opposed to Eq. (4), the third term is not a function
of papp and the reason is that Eq. (4) assumes that if the
app works (which happens with probability papp) then the
probability that a link connected to an app-user does not lead
to the giant component is 1 (while if the app does not work it
is ua). However, whether the app works or not, the probability
that an app-user does not get infected from another app-user
is ua. When apps work, if the second app-user is infected, she
quarantines herself and does not infect any other node).

In the case of including a transmission probability p which
is less than 1 (in the above equations it was assumed the
links are transmitting with probability 1), Eqs. (2) and (3) will
change to:

un = 1 − p + pg1[(1 − πna )un + πnaua], (6)

ua = 1 − p + pg1{(1 − πaa )un + πaa[papp + (1 − papp)ua]}.
(7)

When the fraction πa of nodes selected to adopt the app are
all the highest degree nodes in the network, these nodes all
have a degree higher than ka − 1 such that they include some
of ka nodes and the rest are comprised of all nodes with degree
larger than ka. Then for the fraction ηa of the links protruding
from the app-users (which are the top πa fraction of nodes) we
can write:

ηa = r∗ka pka/〈k〉 +
∞∑

ka+1

kpk/〈k〉, (8)

=
∞∑

ka,right

kpk/〈k〉, (9)

where r∗ is the fraction of degree ka nodes that are app-users
and in Eq. (9) we absorbed r∗ into pk so that pka,right = r∗ pka

represents the fraction of nodes in the network that have
degree ka and are app-users [so in Eq. (9), ka,right takes the
value ka].

Then for a network with homo- or heterophily:

un = 1 − p + p

1 − ηa

ka,left∑
k=0

qk[(1 − πna )un + πnaua]k, (10)

ua = 1 − p + p

ηa

∞∑
ka,right

qk{(1 − πaa )un

+πaa[papp + (1 − papp)ua]}k, (11)

and

s = 1 −
ka,left∑
k=0

pk[(1 − πna )un + πnaua]k

−
∞∑

ka,right

pk{(1 − πaa )un + πaa[papp + (1 − papp)ua]}k.

(12)

A special case of which are networks with neutral (nonexist-
ing) homophily, where πaa is obtained to be equal to ηa and
accordingly πna = ηa, therefore,

un = 1 − p + p
1

1 − ηa

ka,left∑
k=0

qk[(1 − ηa)un + ηaua]k, (13)

ua = 1 − p + p
1

ηa

∞∑
ka,right

qk{ηa[papp + (1 − papp)ua]

+(1 − ηa)un}k, (14)

and

s = 1 −
ka,left∑
k=0

pk[(1 − ηa)un + ηaua]k

−
∞∑

ka,right

pk{ηa[papp + (1 − papp)ua] + (1 − ηa)un}k . (15)

These results predict the behavior of the epidemic dynamics
in the thermodynamic limit. Therefore they describe the dy-
namics very well when the network size is large enough.

B. Mean-field approximation for the branching process

An alternative to writing the consistency equations for the
giant component size is to assume that a branching process
governs the epidemic dynamics. Then, a straightforward way
of finding the epidemic threshold in the SIR model is to find
the critical point of a branching process, where the branching
factor is given by the expected excess degree q. In the epi-
demic setting, the branching factor k̄e = pq gives the expected
number of people one infected person infects during the epi-
demic process. Note that the branching factor has been used
as the definition of the basic reproduction number R0 [88],
but is different from the basic reproduction number when it
is defined in the networks as R0 = β/γ 〈k〉 [80]. In the SIR
model with the app, we need to duplicate the populations so
that we separately track the ones without the app (Sn, In, and
Rn) and with the app (Sa, Ia and Ra).

Given that the apps are uniformly distributed to πa fraction
of the nodes and k̄e is the branching factor, we can write a
mean-field approximation based on the branching process as
follows:

I (t+1)
n = k̄e

[
πnnI (t )

n + πanI (t )
a

]
, (16)

I (t+1)
a = k̄e

[
πnaI (t )

n + πaa(1 − papp)I (t )
a

]
. (17)
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By defining a = πnnk̄e, b = πank̄e, c = πna k̄e, and d =
πaa k̄e(1 − papp), the difference equations can be written as:

Xt+1 = AXt , (18)

where Xt = [I (t )
n

I (t )
a

] and A = (a b
c d).

The steady state Xt+1 = Xt is possible if all the eigenvalues
λ of the transition matrix A (whether real or complex) have an
absolute value which is less than 1;

λ± = a + d

2
±

√(
a + d

2

)2

− (ad − bc). (19)

Without contact tracing, there is a chance of epidemic,
given the initial reproductive number is k̄e > 1. In the case
of app adoption, the critical value of app-users π c

a that is
needed for reducing the reproductive number can be derived
by setting λ = 1 which leads to:

1 − πa(2 − πaa )

1 − πa

[
k̄e + k̄2

e πaa(1 − papp)
]

+ k̄eπaa(1 − papp) + k̄2
e πa(1 − πaa )2

1 − πa
= 1. (20)

When apps work perfectly, the epidemic threshold is given
by:

k̄c =
√

1 + πaπaa[4(πa + πaa ) − 3(πaπaa + 2)]

2πa(πaa − 1)2

+ 2πa − πaπaa − 1

2πa(πaa − 1)2
. (21)

For each value of πa there is a nontrivial optimum value π
opt
aa

that leads to the largest epidemic threshold in terms of the
branching factor, which is

πopt
aa = πa − 2

3πa − 4
. (22)

The critical app adoption can be also calculated as:

π c
a = 1 − k̄e

k̄2
e (πaa − 1)2 + k̄e(πaa − 2) + 1

. (23)

In the absence of homo- or heterophily, πaa = πa, Eq. (20),
gives the same result as of Ref. [44], such that:

π c
a = k̄e − 1 +

√
(k̄e − 1)(k̄e + 3)

2k̄e
. (24)

Vazquez [97] also provides a clear way of combining
different intervention strategies and shows how our specific
results about application homophily are affected by other
interventions.

C. Component size simulations

Next, we describe how to extract the giant component in
simulated networks and how these simulation results can be

used to find the critical points of the disease spreading process.
The component sizes can also be used to find the epidemic size
distributions as described in Sec. II B.

1. Component extension

In each simulation run, we simulate one network structure
G and distribute the apps to the nodes according to one of
the models described in Sec. II C. From the original network
G, we keep each link with probability p = 1 − e−βτ , which
is the probability of infection going through a link without
apps. We also remove all the links between two app-users
with probability papp and call the resulting network Ga. The
components of graph Ga are the normal components.

The extended components can be reached by going through
every normal component and extending it. For every app-
user α in the component C, we go through the neighbors
nα = {α1, α2, . . . , αk} in the original network G. If αi is an
app-user and not in the component αi /∈ C, then we add it
to the component extension C′ with probability p. The total
set of infected nodes, if starting from a node in C, will be
C ∪ C′. As these are disjoint sets, we can compute the size as
S′

C = |C| + |C′| and Sc = |C|.

2. Susceptibility

In numerical simulations of finite-size systems, we can
use the peak of a susceptibility measure to find the critical
transition point. Theoretically, susceptibility [84] is a measure
of fluctuation in the component sizes, which is singular at the
epidemic threshold (the critical point). In network percolation
studies, it is defined as the expected growth in the size of the
giant component when a random link is added to the network.
Therefore, susceptibility in an ordinary percolation problem
can be written as:

χ =
∑

c �=cmax
S2

c − S2
cmax

N − Scmax

, (25)

where Sc is the size of the component c, cmax = argmaxcSc is
the largest component.

Here, we are dealing with two types of components, and
as is shown in Fig. 2(d), the fraction of the sum of compo-
nent sizes and network size S∑/N can be larger than one.
Susceptibility should be a monotonically decreasing function
in the supercritical regime. However, plugging the extended
component sizes into Eq. (25) results in a growth in the tail
of susceptibility, turning it to a nonmonotonic function in the
supercritical regime. Therefore, this formulation of suscepti-
bility is not suitable in the current case since the maximum
of Eq. (25) could lead to estimates of critical points that are
very far from the actual one. Instead, we can use the ex-
pected growth in the extended giant component, which can be
computed as:

χ ′ =
∑

c �=cmax
ScS′

c

(
1 − S′

cmax
N

)
N − Scmax

, (26)

where Sc and S′
c are the size and the extended size of the

component c and cmax = argmaxcS′
c is the largest component

measured in the extended size.
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FIG. 2. Disease spreading statistics in an Erdős-Rényi network
as a function of the effective connectivity k̄e when there are πaN
perfect applications (papp = 1) that are distributed uniformly ran-
domly. Results are normalized to the network size N and shown
for πa ∈ [0, 0.2, 0.4, 0.6, 0.8] with different markers. (a) The normal
component size, i.e., the epidemic probability (dashed lines and
markers following them) and the extended components, i.e., the
epidemic size (solid lines and markers following them). Dashed and
solid lines indicate the results from theory introduced in Sec. III A by
Eq. (4) and the markers are results computed from component sizes
of simulated networks as described in Sec. III C. (b) The expected
epidemic size as given by Eq. (1) computed with theoretical results
introduced in Sec. III A (solid lines), simulated component sizes
introduced in Sec. III C (filled markers), and explicit SIR simulations
introduced in Sec. III D (empty markers). (c) Susceptibility of the
normal giant component χ (dots) and the extended component χ ′

(solid lines) as defined in Eqs. (25) and (26). Since susceptibility is a
divergent quantity at the epidemic threshold, as explained in Sec. III
C 2, it is a good proxy for finding the critical point. Notice that
peaks are at the same positions for both curves, normal and extended
components. (d) The fraction of sum of component sizes and network
size S∑/N .

D. Explicit compartment model simulations

Finally, we will perform explicit simulations of the spread-
ing processes to confirm the theoretical results we arrived
at via the approximations we presented above. The effect
of tracking applications can be integrated into compartment
model simulation by introducing separate susceptible and in-
fected compartments for people with and without the app. The
interactions between people with no app installed is similar to
those of the normal SIR process, namely, susceptible individ-
uals with no app (Sn) can become infected (In) by being in
contact with infected people that either do not have the app
installed (In) or have it installed (Ia). However, if a suscepti-
ble individual with the app (Sa) comes into contact with an
infected individual with app (Ia), they will become infected
but they will also receive infection notification from the app
which means they will be quarantined (Iq). Quarantined indi-
viduals cannot infect anyone else. Eventually, all the infected
individuals will move to the recovered compartment after a
constant predetermined amount of time (1/γ ) has passed from
the beginning of their infection. The recovered compartment

is divided into three compartments Rn, Ra, and Rq to track
which infected compartment the node is originating from.

The set of all reactions can be written as follows:

Sn + In
β−→ In + In, Sa + In

β−→ Ia + In,

Sn + Ia
β−→ In + Ia, Sa + Ia

β−→ Iq + Ia,

In
γ−→ Rn, Ia

γ−→ Ra,

Iq
γ−→ Rq. (27)

Note that while edge reactions are governed by Poisson pro-
cesses happening at a constant rate β, unlike most common
SIR models, node reactions are governed by constant cutoff
time 1/γ and happen exactly 1/γ units of time after the
infection of the node.

As interactions in the simulation are bound to take place
over edges of a static network, with nodes belonging to each
of the compartments, as shown in Sec. IV, the results are
similar to a component size simulation (which are described
in Sec. III C) on a network with effective connectivity of
k̄e = 〈k〉(1 − e−β/γ ). As only the ratio between β and γ plays
as a parameter in the model, we set the value of γ to 1.

In each simulation, starting from a single infected node
and running the simulation in discrete time steps of 10−4

units until no further reaction is possible, the final num-
ber of nodes that end up in Rq, Ra, and Rn determine total
size of infection corresponding to the extended component
size S′ of the component that the initial seed node belongs to.
The final combined size of the Rn and Ra component, however,
represents the size of the component Sn that the seed node
(index case) would belong to, had we removed app-app links.
By adding Ia and Iq compartments, as compared to normal
SIR processes, and linking them to the state of the source
of infection and the internal state of each node, we include
information about the history of the spreading agent more than
one step back in the simulation of the spreading process.

IV. NUMERICAL RESULTS

We will next illustrate using the theory and simulation
introduced in Sec. III how the various parameters affect the
epidemic sizes and epidemic probabilities. The simulation
studies are done in networks of 104 nodes and averaged over
10 realizations. We use two network topologies: homogeneous
networks (Erdős-Rényi networks) with expected degree 〈k〉 =
10 and random networks with expected degree sequence
driven from power-law degree distribution p(k) ∝ k−3, with a
minimum degree cutoff adjusted such that the average degree
is set to 10 [94].

A. Differences in normal and extended components

The difference between the epidemic probability (normal
component size) and the epidemic size (extended component
size), as given by Eqs. (4) and (5), is a phenomenon spe-
cific to epidemics in the presence of app-adaptors. Breaking
the equivalence of these two measures can have practical
consequences, as illustrated in Fig. 2(a). The difference be-
tween these two grows with the fraction of app-users πa.
For example, when πa = 0.8 and the epidemic probability
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FIG. 3. The effect of quarantine failures as described in Sec. IV B
in homogeneous networks when app adoption is done uniformly
randomly. Results are from percolation simulations. (a) The epi-
demic threshold as a function of quarantine probability papp and app
adoption rate πa. All threshold values larger than 4 are shown with
the same color. By setting the effective connectivity of the network
to k̄e = 1.8 (b) the expected epidemic size, (c) the extended giant
component size, and (d) the normal giant component size are shown
as a function of papp and πa. Note that k̄e = 1.8 is chosen as an il-
lustrative example of a parameter region with interesting behavior in
the various component sizes: It is large enough such that without any
intervention, there is a wide epidemic spreading, but small enough
such that the spread can be controlled without extreme measures.

(the normal component size) is smax ≈ 0.5, the epidemic size
(the extended component size) reaches smax ≈ 0.8. This is
also reflected in the expected epidemic sizes [see Fig. 2(b)
and Eq. (1)]. Despite the two component definitions differing
from each other, they still display the transition at the same
point and this point can be measured numerically using the
susceptibilities defined in Eqs. (25) and (26) [see Fig. 2(c)].

The extended component size is not a conserved quantity
like the normal component size in the sense that the sum
of component sizes S∑ would always sum to the number of
nodes N . Instead, the sum of component sizes can be signifi-
cantly larger than the number of nodes [see Fig. 2(d)] and the
maximum value it can reach grows with the number of ap-
plication users πa. The deviation from S∑/N = 1 reaches its
maximum with disease parameters higher than the threshold
values, but when the disease reaches a large enough popula-
tion, the fraction S∑/N starts to decay, reaching S∑/N = 1
when everybody belongs to the normal giant component.

B. Quarantine failures

The assumption in Sec. IV A is that (i) apps work per-
fectly and (ii) an app-user always self-isolates before having
a chance to spread the infection, meaning that there are no
quarantine failures, papp = 1. It is of practical significance
to investigate the effects of quarantine failures [45] on the
epidemic threshold and epidemic size. Figure 3 shows that

FIG. 4. Expected epidemic size 〈E〉 and epidemic threshold k̄c

for two network topologies with different strategies; 〈E〉 as a func-
tion of effective connectivity k̄e for (a) homogeneous networks with
Poisson degree distribution and for (c) heterogeneous networks with
a power-law degree distribution P(k) ∝ k−3. Results are shown for
different values of πa using different markers: 0 (stars), 0.2 (trian-
gles), 0.4 (disks), 0.6 (diamonds), and 0.8 (crosses). The solid lines
with markers indicate the high-degree targeting strategy, while single
markers indicate the random app adoption. Epidemic threshold k̄c

as a function of app-adoption rate πa (such that the upper markers
represent the high-degree targeting strategy) for (b) homogeneous
networks and for (d) heterogeneous networks. Differences between
the threshold values in the presence of homophily are explained in
Figs. 5(b) and 5(d).

in the absence of major quarantine failures, epidemic tracing
and mitigation with apps can still be a valid strategy if the app
adoption level in a society is high enough. The effect of app
adoption rate πa is more important than the rate at which apps
function, but both need to be relatively high in order for the
apps to have a significant impact.

Even if we are above the epidemic threshold, the apps can
be useful. Especially when the application adoption πa is high,
the quarantines can be very unreliable and the outbreak size
[Figs. 3(b) and 3(c)] and epidemic probability [Fig. 3(d)] both
remain small. Again, overall, app adoption and quarantine
reliability are essential, with the app adoption rate being more
important.

C. Degree heterogeneity and high-degree app targeting

Real networks are degree-heterogeneous and this hetero-
geneity has a strong effect on the final outbreak size and the
epidemic threshold. Figure 4 shows the expected epidemic
sizes with two different strategies in app adoption, random,
and high-degree targeting, for different fractions of app-users
πa in the network. In homogeneous networks, Fig. 4(a), con-
tact tracing decreases the expected epidemic size and pushes
the epidemic threshold forward. These effects can be fur-
ther amplified by shifting to the high-degree targeting in
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FIG. 5. The effect of homophily or heterophily in app adoption
in homogeneous networks as described in Sec. IV D. Homophily
(heterophily) region is below (above) the diagonal πa = πaa. Ex-
pected epidemic size at k̄e = 1.8 for (a) random app adoption and
for (c) high-degree targeting strategy. The epidemic threshold for
(b) random app adoption and for (d) the high-degree targeting strat-
egy. Thresholds are from theoretical results given by Eq. (21) and
expected epidemic sizes are from percolation simulations. The empty
white region is the spectrum that having such a homo- or heterophilic
population is impossible.

app adoption. With 80% of app-users, the epidemic thresh-
old can move from k̄e = 1 to k̄e = 4, which means at that
point expected epidemic size is zero, while without contact
tracing it would be almost 1. Note that in homogeneous net-
works, the effective average degree of the contact network k̄e,
has good correspondence to the reproduction number of the
infection.

In networks with degree-heterogeneity, the epidemic
threshold vanishes in normal SIR processes. This effect holds
in contact-traced epidemics if we distribute the apps uni-
formly randomly. However, from Fig. 4(b) it is clear that
contact tracing can significantly reduce the expected epidemic
size even when the apps are randomly distributed and the
epidemic threshold remains unchanged. With the high-degree
targeting strategy, it is possible to move the epidemic thresh-
old. Comparing the expected epidemic size at different values
of k̄e < 3 shows that in real-world situations, app adoption
of superspreaders is of significant importance. Since hubs
become the app-users, this strategy has drastic effects on the
size and threshold of the epidemic, such that the threshold gets
pushed from somewhere near zero to a value k̄e > 5 with the
app adoption rate πa = 0.8. Therefore, the reproduction num-
ber can be much more controlled in the high-degree targeting
strategy.

D. The effect of homophily and heterophily

In previous sections, there was an assumption that app-
users are distributed with random mixing patterns; the
fact that one of the connections of a node is an app-
user has no effect on the probability of that node being

FIG. 6. Existence of optimum value for homophily based on
branching process approximation as described in Sec. III B. (a) The
critical value of app-users π c

a that are needed for reducing the repro-
ductive number as a function of effective connectivity and homophily
probability πaa. The value of π c

a remains the same within each black
curve. The inset is the graph of π c

a as a function of k̄e in the absence
of homophily πaa = πa given by Eq. (24). (b) The epidemic threshold
k̄e as a function of πaa and πa. The red symbols show the π opt

aa for each
πa which is given by to Eq. (22). The pattern here is consistent with
another approximation shown in Fig. 5(b), while epidemic threshold
values are slightly different due to different levels of approximations.
Note that here we display the epidemic threshold for all values of πaa

and πa such that 0 � πna � 1 so the networks with some of these
parameters can be created in practice [95].

an app adopter. Next, we explore how homophily or het-
erophily affects epidemics based on app usage using the MN
model. A Swiss experiment has reported that while a small
fraction of πa = 0.2 of people have used the app, the in-
side connections between them was high enough such that
πaa = 0.7 [40].

Figure 5 illustrates that increasing heterophily leads to
a lower epidemic threshold and larger epidemic size for a
fixed k̄e. Increasing homophily from random mixing is ini-
tially preferable, but the optimum lies between random mixing
and full homophily. For the expected epidemic size, strong
heterophily is especially detrimental [see Fig. 5(a) for the
homogeneous network and with random app adoption and
in Fig. 5(c) for high-degree targeting strategy]. The optimum
value for heterophily or homophily is evident for the epidemic
thresholds in Figs. 5(b) and 5(d), respectively, for the ran-
dom and high-degree targeting strategies. Figure 6(b) gives
a more clear picture of existence of an optimum value for
the epidemic threshold in the case of homophily. According
to Eq. (21), for each fraction of app-users πa in the network,
the epidemic threshold k̄c(πa, πaa ) can be maximized by con-
trolling the homophily in app adoption πaa. The pattern in the
Fig. 6(b) is very similar to the convex pattern in Fig. 5(b), even
though they are calculated using different approximations and
approaches (see Secs. III A and III B).

Another view on the effect of homophily and heterophily
is given by finding the critical fraction app-users π c

a that is
needed to go beyond the epidemic threshold as a function
of (πaa and k̄e). Figure 6(a) depicts this relationship based
on Eq. (23) and shows that π c

a is not monotonic function of
πaa but there is an optimal value of πaa giving the lowest
fraction apps that are needed to stop the epidemic. Note that
in a network without homophily or heterophily π c

a increases
monotonically as the function of the effective connectivity k̄e

[see the inset of Fig. 6(a)].
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FIG. 7. The expected epidemic size computed with theoreti-
cal results introduced in Sec. III A for heterogeneous networks
with degree distribution P(k) ∝ k−3 (solid lines) compared with
ones with P(k) ∝ k−2.5 (dotted lines) as a function of the effec-
tive connectivity k̄e when apps are distributed uniformly randomly.
Results are normalised to the network size N and shown for πa ∈
[0, 0.2, 0.4, 0.6, 0.8] with different colors. Note that by lowering the
exponent, epidemic thresholds get closer to zero and the expected
epidemic sizes decrease since there more low-degree nodes in the
network. Therefore, by lowering the exponent, while we can add
more degree heterogeneity in the network, the physics of the phe-
nomena does not change.

V. DISCUSSIONS

In this article, we have developed two flexible analytic
approximations to SIR epidemics in the presence of contact
tracing apps. First, we use a branching process to derive ex-
plicit analytical solutions for the epidemic thresholds. Second,
we expand the framework of using self-consistent equations to
analyze digital contact tracing [44], which is an alternative
to other approaches [71]. Contrary to the conventional SIR
spreading, a full picture of the late-state epidemics in the
presence of digital contact tracing is not given by a single
observable (the component size), but one also needs two
variables (normal and extended component sizes). These cor-
respond to the probability of the epidemic and the epidemic
size, which are equivalent in the SIR process. Here we see that
the two quantities can be significantly different if the number
of application users is high.

Our numerical results illustrate that the effects of digital
contact tracing can be very sensitive to the network structure,
how applications are distributed among the population, and
how well the tracing works. Realistic estimates of the effects
of digital contact tracing can only be achieved if one can
choose correct parameter ranges in a high-dimensional param-
eter space. In this study, we had six of such parameters: the
shape of the degree distribution, average degree, amount of
heterophily or homophily, application prevalence, quarantine
probability and targeting strategy. While we were able to
establish and confirm basic laws governing individual param-
eters and some combinations of parameters, exploring such a
parameter space fully for possible compound effects is out of
the reach in simulations. However, these effects can be largely
revealed by inspecting the analytic equations we derived.

FIG. 8. The epidemic threshold as a function of quarantine prob-
ability papp and app adoption rate πa. The effect of quarantine failures
in homogeneous networks with (a) random app adoption (b) and
high-degree targeting strategy. Also, for heterogeneous networks
with a power-law degree distribution with (c) random app adoption
(d) and high-degree targeting strategy. All threshold values larger
than 5 are shown with the same color.

There are several open questions for which this study and
other studies only hint at the results. There are types of net-
work structures we ignore here. For example, the heterophily

FIG. 9. Expected epidemic size in the case of quarantine failures.
Expected epidemic size at k̄e = 1.8 for homogeneous networks with
(a) random app adoption (b) and high-degree targeting strategy. Also,
for heterogeneous networks with a power-law degree distribution
with (c) random app adoption (d) and high-degree targeting strategy.
In (b) and (d) the pattern is different due to the effects of hubs.
When doing a high-degree targeting strategy, quarantine failures are
more significant since the infected ones are highly influential on the
spreading dynamics.
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FIG. 10. The effect of homophily or heterophily in app adop-
tion on the expected epidemic size. Expected epidemic size at k̄e =
1.8 from percolation simulations for homogeneous networks with
(a) random app adoption (b) and high-degree targeting strategy. Also,
for heterogeneous networks with a power-law degree distribution
with (c) random app adoption and (d) high-degree targeting strategy.
The empty white region is the spectrum that having such a homo- or
heterophilic population is impossible.

and homophily could be constructed in the network in slightly
different ways. For example, a case study using a realistic
agent-based model [69] has recently considered, among many
other modeling choices aimed at precise calibration on the
French population, the contributions of individuals of differ-
ent ages. One could also develop a more realistic version
of our stylized model to systematically analyze the effects
of homophily caused by an age-based contact structure and
different scenarios of app adoption within that structure. The
age-based approach would also allow one to estimate the ben-
efits of applications relative to the risk groups in this model.

Overall the problem of digital contact tracing offers not
only a practical problem to solve but also an interesting the-
oretical puzzle because it introduces memory to the epidemic
process. This memory is limited to one step within the tracing
model we use here, but one could also use multistep tracing,
where also the second neighbors of infected nodes are quar-
antined in the case that the first neighbors have already passed
on the infection. Further, here we ignore effects such as quar-
antines that do not directly stop the infection from one appli-
cation user to another from spreading further. However, in the
case of a strong group structure in the network, there could be
situations where a nonapplication user A infects application
user B, who alerts another application user C, who actually
gets infected by A and stops the spreading because of the
quarantine. Analyzing such more complicated phenomena can
provide challenges for network scientists for years to come.
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APPENDIX

The heterogeneity in the number of contacts could also
be modeled with other distributions, for example, the nega-
tive binomial distribution. This would have the advantage of
having a nodivergent second moment supported by empiri-
cal evidence. However, we aimed to illustrate the effects of
degree heterogeneity and not perform a systematic analysis.
We already have many different random network models and
combinations of parameters related to the app distribution,
how well it works, and disease parameters. The equations we
give make it possible for one to do such analysis if needed.
Therefore we limited our main discussion to the differences
observed in a power-law network with exponent −3 compared
to the results for homogeneous networks. However, to satisfy
the curiosity of the reader interested in extreme heterogeneity,
we have now added Fig. 7 showing the expected epidemic size
for exponent −2.5.

About quarantine failures, as it was shown in Figs. 3, 8 and
9 also show that contact tracing can yield very good results
in terms of reducing the epidemic threshold and expected
epidemic size if everything goes right at least for 50% and
half of the people use the apps. This effect is more prominent
if we go for the high-degree targeting strategy, especially in
heterogeneous networks, as shown in Figs. 8(d) and 9(d).
Figures 10 and 11 show that there is an optimum value for
homophily in app adoption as it was shown in Fig. 5 and
Fig. 6. The only exception is when we follow a high-degree
targeting strategy in heterogeneous networks. In this case, we
can see the hub effect on the epidemic threshold and size.
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Connectivity and reachability on temporal networks, which can describe the spreading of a disease, the
dissemination of information, or the accessibility of a public transport system over time, have been among the
main contemporary areas of study in complex systems for the last decade. However, while isotropic percolation
theory successfully describes connectivity in static networks, a similar description has not yet been developed
for temporal networks. Here, we address this problem and formalize a mapping of the concept of temporal
network reachability to percolation theory. We show that the limited-waiting-time reachability, a generic notion
of constrained connectivity in temporal networks, displays a directed percolation phase transition in connectivity.
Consequently, the critical percolation properties of spreading processes on temporal networks can be estimated
by a set of known exponents characterizing the directed percolation universality class. This result is robust across
a diverse set of temporal network models with different temporal and topological heterogeneities, while by using
our methodology we uncover similar reachability phase transitions in real temporal networks too. These findings
open up an avenue to apply theory, concepts, and methodology from the well-developed directed percolation
literature to temporal networks.

DOI: 10.1103/PhysRevResearch.4.L022047

Many dynamical processes evolving on networks are re-
lated to the problem of reachability. Reachability describes
the existence of a possible path of connections between two
nodes, denoting the possibility and the extent that one node
can affect, cause a change in, or communicate with the oth-
ers based on interactions represented in the network. The
conception and formalism of reachability, however, change
dramatically if one considers the time-varying nature of
connections between nodes [1] as opposed to the classic
static network modeling of systems where connections are
considered constant. Time induces an inherent direction of
connectivity, as it restricts the direction of influence or infor-
mation flow. This in turn has an impact on many dynamical
processes evolving on such networks, such as spreading [2–4],
social contagion [5,6], ad hoc message passing by mobile
agents [7], or routing dynamics [8]. In these processes, in-
teracting entities may have limited memory, thereby only
building up paths constrained by limited waiting times, fur-
ther restricting the eligible temporal structure for their global
emergence.

Directed percolation (DP) is a paradigmatic example to
characterize connectivity in temporal systems. This process
exhibits dynamical phase transitions into absorbing states with
a well-defined set of universal critical exponents [9–12]. Since

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

its introduction [13] and during its further development [14],
directed percolation has attracted considerable attention in
the literature. It has applications in reaction-diffusion systems
[15], star formation in galaxies [16], conduction in strong
electric fields in semiconductors [17], and biological evolution
[18]. While it is straightforward to define idealized mod-
els governed by directed percolation, such as lattice models
[19–25], its features are more difficult to realize in nature
[12,26], allowing only a few recent experimental realizations
of directed percolation [27–29]. Nevertheless, this description
is advantageous in providing an understanding of the connec-
tivity of temporal structures to describe ongoing dynamical
processes [30–40].

There is a thorough theoretical understanding of static
network connectivity with several concepts borrowed from
percolation theory, such as phase transitions, giant compo-
nents, and susceptibility. These concepts, originally developed
for lattices and random networks, are routinely used to
analyze real-world networks and processes, e.g., disease
spreading [41–45]. Connectivity is also a central property of
temporal networks, with several recent techniques to charac-
terize it, e.g., using limited-waiting-time reachability [46–50].

A mapping between the temporal reachability phase transi-
tion and directed percolation has been anticipated before. This
is a straightforward intuition as directed percolation accounts
for the time-induced inherent directionality that characterizes
temporal networks. For the special cases of contact suscep-
tible → infected → susceptible (SIS) and susceptible →
infected → recovered → susceptible (SIRS) processes, this
mapping has been shown over a regular lattice structure with
the assumption that the contact between nodes follows a

2643-1564/2022/4(2)/L022047(7) L022047-1 Published by the American Physical Society
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FIG. 1. Different representations of an instantaneous, undirected
temporal network. (a) Vertices vi are connected via dyadic instan-
taneous events e j . (b) In a weighted temporal event graph, adjacent
events are connected via links directed by time and weighted with the
time difference �t between them. Paths in an event graph are equiva-
lent to time-respecting paths [56]. (c) Waiting-time constrained event
graphs with links of weights �t � δt removed contain all δt-limited
paths. (d) Reduced event graph in which locally redundant links
are removed (see main text). The highlighted line represents a time
respecting path (a) and its equivalent path over event graphs (b) and
(c) and reduced event graph (d).

Poisson point process [9,12,51]. This mapping has been
shown for a particular class of temporal dynamical systems,
involving deterministic walks and discrete temporal layers
[40]. For a more general class of temporal networks, Ref. [52]
conjectured the mapping with directed percolation based on
semantic similarities between the two systems and some em-
pirical evidence. However, these studies could not provide
conclusive evidence for this mapping for a broader set of
temporal networks. In this Research Letter, we aim to show
analytically that limited-waiting-time reachability on tempo-
ral networks, under a mean-field assumption of connectivity,
has a phase transition in the directed percolation universality
class. Combined with the experimental results of Ref. [53], we
conclude that the same is true for a diverse subset of temporal
networks, with a wider range of temporal and spatial con-
nectivity compared with the mean-field assumption. Lastly,
we illustrate how the directed percolation methodology, the
formalism, and the introduced characteristic quantities can be
used to analyze real-world temporal networks, for example, in
detecting the onset of reachability phase transitions.

Modeling approach. A temporal network G = (V, E, T )
is defined as a set of nodes V connected through events
e = (u, v, tstart, tend) ∈ E , each of which represents an in-
teraction of two nodes u, v ∈ V starting at time tstart and
ending at time tend observed during an observation period T
(i.e., tstart, tend ∈ T ∀e ∈ E and tstart < tend). The connectivity
of events is characterized by time-respecting paths [34,54],
defined as sequences of adjacent events. Here, we call two
distinct events e, e′ ∈ E adjacent and denote this by e → e′, if
they follow each other in time (t ′

start > tend) and share at least
one node in common ({v, u} ∩ {v′, u′} �= ∅) as demonstrated
in Fig. 1(a). For simplicity, we assume that temporal network
events are instantaneous (tstart = tend), but all of our notations
can be easily extended to directed events and to temporal
hypergraphs [47,55].

While time-respecting paths encode the possible routes
of information, some dynamical processes have further re-
strictions on the duration they can propagate further after
reaching a node. For example, in disease spreading, infected
nodes may recover after some time, becoming unable to infect
other nodes unless reinfected. In our definition, we define
limited waiting times in temporal paths by allowing adja-
cent events e = (u, v, tstart, tend) and e′ = (u′, v′, t ′

start, t ′
end) to

be connected (δt adjacent) only if there is less than δt time
between them (i.e., t ′

start − tend < δt). In contrast to the control
parameters based on node or event occupation probabilities,
which could be used to adjust the overall activity level of the
network, changing δt modifies the behavior of the spreading
itself. Additionally, processes unconstrained by waiting time
can be modeled as a special case of the limited-waiting-time
process, with an infinitely large value of δt .

A compact way of describing the problem of reachability
on temporal networks is provided by the weighted event graph
representation D = (E, ED,�t (e, e′)), a static directed acyclic
representation of temporal networks [52]. In this description,
events act as nodes, and two events e and e′ are connected
through a directed, weighted link if they are adjacent with
weights defined as �t (e, e′) = t ′

start − tend, i.e., ED = {(e, e′) ∈
E × E | e → e′}. The event graph contains a superposition of
all temporal paths [56] and retains the arrow of time even after
turning the temporal structure into a static one [Fig. 1(b)].
Event graph representation of temporal networks has proven
to be suitable for studying properties of temporal networks
such as occurrences of motifs [57], decomposition of the tem-
poral network into smaller components [58], and providing
a lower-dimensional embedding of the temporal network that
can be consumed by many machine-learning methods [59].
For our use case, a superposition of all δt-limited-time tem-
poral paths (Dδt ) of the temporal network can be achieved
by constructing the event graph of the temporal network and
removing all the event graph links with weights larger than
δt ; in other words, Dδt is a directed graph with the same set of
vertices and the same weight function as D and set of edges
{(e, e′) ∈ ED | �t (e, e′) � δt} [see Fig. 1(c)].

Furthermore, we define the reduced temporal event graph
D̂ and its waiting-time constrained variation D̂δt , where only
the first adjacency relationships per temporal network node
for each event are retained. D̂ and D̂δt nodes have a maximum
in- and out-degree of 2, yet they contain all the reachabil-
ity relationships of the original event graph [60]. That is,
the reduced event graph exactly retains the reachability of
the original event graph by removing redundant connections
(feed-forward loops) between events. The reduction allows
interpretation of the three possible out-degrees using the ter-
minology of directed percolation as annihilation (0), diffusion
(1), and decoagulation (2) in the case that the out-neighbors
are not already reachable through some longer loop. Note
that this upper bound on in- and out-degrees is valid if the
probability of simultaneous occurrence of adjacent events is
negligible. See Supplemental Material (SM) for more details
[61].

Order parameters and other characteristics. Compared
with static structures, temporal networks incorporate time as
an additional degree of freedom, which introduces an extra
dimension to the characterization of their structural phase
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transition of connectivity around a critical point. This is sim-
ilar to directed percolation, where dimensions are related to
space and time with associated independent critical exponents
[62,63]. We measure the expected δt-limited-waiting-time
reachability starting from a random event e. Of interest is the
number of unique reachable nodes Ve→ ⊆ V , the time dura-
tion of the longest path (i.e., its lifetime [52]) Te→ ⊆ T , and
the total number of reachable events Me→ ⊆ E . The expected
values of these are analogous to the mean spatial volume V =
〈|Ve→|〉, mean survival time T = 〈max Te→ − min Te→〉, and
mean cluster mass M = 〈|Me→|〉 in the directed percolation
formalism (respectively) [9,12]. Furthermore, in parallel to
directed percolation, we define the survival probability P(t )
as the probability that there is a path from a randomly se-
lected initial source event at t0 to an event after time t0 + t .
The ultimate survival probability P∞ = limt→∞ P(t ) is then
the survival probability at large values of t . Note that when
defining these quantities, we opted for simplicity (see Supple-
mental Material [61] for discussion).

Using the maximum waiting time δt as a control parameter
is a natural choice as it has a clear physical interpretation.
However, unlike occupation probabilities that are typically
used as control parameters in directed percolation, the scale
of δt depends on the timescales of the system. Furthermore,
although it is related to the local connectivity, this relationship
is indirect and might depend on, e.g., the temporal inhomo-
geneities in interaction sequences. For this reason, we define
another control parameter that directly measures the local con-
nectivity of the system. We use the local effective connectivity
q̂out(δt ), which is the average excess out-degree of the reduced
event graph D̂δt . This is a monotonically increasing function
of δt , which normalizes the changes in connectivity given by
the changes in the maximum allowed waiting time δt . We
then centralize this quantity by subtracting its value from its
phase-transition critical point q̂out

c and denote the resulting
control parameter as τ = q̂out − q̂out

c .
In addition to the single-source scenario, where the compo-

nent starts from a single node in Dδt , we investigated the fully
occupied homogeneous initial condition, where we compute
paths starting from all nodes in Dδt with time t < t0. Analo-
gous to directed percolation, we define particle density ρ(t ) as
the fraction of infected nodes in Dδt at time t , while stationary
density ρstat(τ ), the order parameter, is defined as the particle
density after the system reached a stationary state. We can in-
corporate the effects of an external field h into this scenario: In
continuous time, this would be equivalent to the spontaneous
emergence of sources of infection, i.e., occupation, of nodes
in Dδt (events in G) through an independent Poisson point
process with rate h. Susceptibility χ (τ, h) = ∂

∂hρstat(τ, h) can
then be measured through observing the effect of changing the
external field [12].

Critical behavior in random systems. Next, we derive a
mean-field approximation for the above-defined measures and
identify the critical point. We model temporal networks with
an underlying static structure, where events are induced via
links activating by independent and identical continuous-time
stochastic processes. In order to do so, we need to first derive
the degree distribution of the reduced event graph D̂δt , i.e.,
probabilities that one can reach zero, one, or two events from
a randomly chosen event in the temporal network. Given the

excess degrees l and r of the two temporal network nodes
in G incident to the link corresponding to the event e ∈ E ,
we can compute the probability of a zero out-degree for a
node in D̂δt (i.e., an event in original temporal network G) as
p̂out

0 = �δt�̂
l+r
δt . Here, �δt is the cumulative interevent time

distribution induced by a link activation process for a given δt ,
and �̂δt is the corresponding cumulative residual interevent
time distribution. Similarly, for out-degree 2, we can compute
p̂out

2 = ∫ ∞
0 (1 − �̂l

min δt,t )(1 − �̂r
min δt,t )πt dt , where πt is the

interevent time distribution. Given that the maximum out-
degree of events in the reduced event graph is 2, the p̂out

1 can be
derived as p̂out

1 = 1 − p̂out
0 − p̂out

2 . In-degree probabilities can
be derived similarly.

The joint in- and out-degree distribution of the event
graph can be computed from the excess degree distribution
qk of the underlying static network. If the degrees are in-
dependent, this becomes p̂in,out

i,o = ∑
l,r p̂in

i p̂out
o qlqr . We will

denote the generating function of the joint degree distribu-
tion as G0(zin, zout) and the corresponding excess out-degree
distribution as Gout

1 (zout). We construct the mean-field rate
equation for occupation density ρ(t ) in the homogeneous
occupation initial condition using the excess out-degree distri-
bution of the event graph q̂out

k = dk

k!dzk Gout
1 (z)|z=0. The excess

out-degree of nodes in the event graph D̂ gives the change in
the number of further nodes we can reach from an already
reached node: Nodes with out-degree 2 increase the number
of reached nodes by 1, nodes with out-degree 1 do not affect
the number of reached nodes, and nodes with out-degree 0
reduce by 1 the number of reached nodes. The total change
therefore is q̂out

2 − q̂out
0 . In addition, some nodes we can reach

are already reachable through other paths. In total we reach
on expectation q̂out

1 + 2q̂out
2 nodes where each node is already

reached with probability ρ(t ). The rate equation becomes

∂tρ(t ) = [
q̂out

2 − q̂out
0

]
ρ(t ) − [

q̂out
1 + 2q̂out

2

]
ρ2(t ). (1)

In this equation the values of q̂out
k are constants in time. Not-

ing the critical point for this equation as q̂out
2 − q̂out

0 = 0 and
noting that the expected value is by definition q̂out = q̂out

1 +
2q̂out

2 and that q̂out
2 − q̂out

0 = q̂out − 1, we can write Eq. (1) as
∂tρ(t ) = τρ(t ) − q̂outρ2(t ).

Equation (1) follows the same form as the directed perco-
lation mean-field equation for a (d + 1)-dimensional lattice
[12] and can be solved explicitly (see Supplemental Material
[61]). It has the critical point at τ = 0, while it indicates that
ρ → τ/q̂out for τ > 0. Asymptotically, it provides the critical
exponents as ρ(t ) ∼ t−α at τ = 0 and ρstat(τ ) ∼ τβ when
τ > 0 and t → ∞ with values α = β = 1, where α = β/ν‖
and ν‖ is the temporal correlation length exponent, in accor-
dance with the corresponding mean-field directed percolation
critical exponents [12].

The expected out-component size, i.e., mean cluster mass
M, can be computed from the joint degree distribution of the
event graph D̂δt by assuming that it is a random directed graph
with the same joint in- and out-degree distribution as D̂δt . The
out-component size distribution probability-generating func-
tion H0 can be derived from H0(zout) = zoutG0(1, H1(zout)),
H1(zout) = zoutGout

1 (H1(zout)), and the mean out-component
size can be written as M = ∂H0(zout )

∂zout
|zout=1 [64]. These equa-

tions, when τ → 0−, lead to M ∼ −τ−γ with γ = 1 (see
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Supplemental Material [61]). Here, γ = ν‖ + dν⊥ − β − β ′,
matching the mean-field exponent of mean cluster mass in di-
rected percolation [12]. Here, ν⊥ indicates the spatial temporal
correlation exponent.

The component survival probability P(t ) is measured by
the out-component time span of nodes in the event graph, and
the occupation density ρ(t ) is calculated by the in-component
sizes of all possibly reachable nodes, implying that these two
quantities are equal, ρ(t ) = P(t ) (see Supplemental Material
[61]). Consequently, given the control parameter τ , ρstat(τ ) =
P∞(τ ) as long as the time-reversed event graph has the same
probability of being generated as the original one (e.g., if
∀i,o pin,out

i,o = pin,out
o,i ). This leads us to the rapidity-reversal

symmetry for event graphs similarly characterizing directed
percolation [65] where β = β ′ and P∞(τ ) ∼ τβ ′

. Note that
while the condition above holds for a variety of random tem-
poral network models, for real-world systems intuition might
suggest, e.g., a higher probability of pin,out

1,2 as compared with

pin,out
2,1 due to over-representation of causal motifs [57]. In

practice, however, we observed no deviations from the above
condition in two large real-world systems (see Supplemental
Material [61]).

Finite-size scaling in random systems. The critical expo-
nents can be empirically verified through finite-size scaling
of the system close to its percolation critical point, where its
large-scale properties become invariant under scale transfor-
mations. We simulate random temporal networks of varying
size and perform efficient reachability estimations [47] from
single-source and homogeneous fully occupied initial con-
ditions. We expect that curves of macroscopic quantities
collapse when using the correct critical exponents of β, ν‖,
and ν⊥ corresponding to the mean-field values of directed
percolation. The results confirm that the directed percolation
mean-field exponents characterize the percolation phase tran-
sition of random temporal networks. This is demonstrated in
Figs. 2(a)–2(f) for temporal networks induced on a 9-regular
network with links activated via independent Poisson pro-
cesses. These results are robust in the presence of several types
of temporal and spatial heterogeneities [53].

Directed percolation measures in real-world temporal
networks. We measure the same macroscopic quantities as
before for four different real-world systems, concentrating
on temporal networks describing air transportation, public
transportation, Twitter mentions, and mobile phone calls
[Figs. 3(a)–3(d)], respectively]. In these networks, an event
represents a flight between two airports in the United States,
a public transport vehicle transiting between two consecutive
stations on a typical Monday in Helsinki, a user mention-
ing another user in a tweet on Twitter, and a mobile phone
subscriber calling another subscriber of a major European
carrier, respectively. For details of the data sets, see Table
S1 of the SM. In each system, there is clear evidence of an
absorbing to active phase transition in terms of M, V , and
ρstat. Note that the scales of these quantities are not directly
comparable, highlighting the fact that distinguishing between
the different notions of connectivity is important in practical
terms. Furthermore, multiple peaks in susceptibility indicate
multiple connectivity timescales.

The reachability phase transition can be better understood
by investigating temporal connectivity profiles represented by

FIG. 2. Finite-size scaled (a) and (c) mean cluster mass M,
(b) and (d) volume V , and (e) survival probability P̂(t ) for single-
source spreading scenarios. (f) Particle density ρ(t ), (g) static density
ρstat, and (h) susceptibility χ (δt, 0) as a function of δt for the homo-
geneous initial condition. Measurements are averaged over at least
256 (up to 4096) realizations of temporal network constructed from
random 9-regular networks (N ∈ {28, . . . , 217}) and Poisson point
process activations λ = 1 of links. All functions of time are measured
at δt = δtc = 0.088 08. d is set to directed percolation upper critical
dimension dc = 4.

cluster volumes of individual events. Structures similar to
those of random networks (see Supplemental Material [61])
can be observed for air transport and Twitter [Figs. 3(e)
and 3(g)]. However, in air transport, the structure is regular,
following the diurnal pattern of flights. In Twitter, the compo-
nents do not reach most nodes due to the greater separation
of temporal components, and their structure reflects the rare
emergence of possible macroscopic cascades. Public transport
(1 day) and mobile networks display a single winglike struc-
ture [Figs. 3(f) and 3(h)]. This is induced by early components
that can reach a significant fraction of nodes, which are then
joined by other components reaching smaller subsets. This is
also indicated by the horizontal structures under the wings.

Conclusion. The connectivity of a network is an impor-
tant measure of its resilience and an underlying concept for
any dynamical process running on it. It encodes the possi-
ble transportation routes or paths of information diffusion
and determines how misinformation or diseases spread in
real-world settings. The connectivity of static networks and
related dynamical processes are routinely analyzed within the
framework of (isotropic) percolation theory [30,31,41] with
methods borrowed from critical phenomena [9,70]. Further-
more, many natural or synthetic networks, ranging from the
brain [71,72] or artificial neural networks [73] to geological
phenomena [74] and urban systems [75] tend to self-organize
their medium or their parameters or be optimized by outside
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FIG. 3. Mean cluster mass M, mean cluster volume V , static
density ρstat, and susceptibility χ (δt, 0) as a function of δt for four
real-world networks: (a) Air transport [66], (b) Helsinki public trans-
portation [67], (c) Twitter mentions [68], and (d) mobile phone calls
[69] display an absorbing to active phase transition around 470 s,
670 s, 25 min, and 7.5 h, respectively, as indicated by change from
very small values for M, V , and ρstat to values comparable to the
size of the system and a peak in susceptibility χ (δt, 0). Mobile and
Twitter networks show a second peak in susceptibility around 1.5 and
22 h, respectively, and Twitter data show a third peak around 14 h.
The trajectories are rescaled to the range [0,1]. δtc is estimated using
the analytical solution from Ref. [53] by approximating the network
to a temporal network with a random regular static base and Poisson
point process activation. This estimates the threshold at 500 s, 488 s,
119.1 h, and 22.5 h, respectively, displayed using solid vertical lines
in (a)–(d). The temporal reachability profiles display relative cluster
volumes for each event as a function of the event time for δt ≈ δtc

for (e) air transport, (f) Helsinki public transportation, (g) Twitter
mentions, and (h) mobile phone call networks.

intervention towards criticality [76,77]. Therefore it is of great
utility to locate the onset of critical phase-transition points and
predict the behavior of the system in that vicinity.

While connectivity transitions and the critical behavior
of the system are understood in static networks by means
of isotropic percolation theory, temporal networks, by and

large, have been out of reach of a similar methodology. This
has practical implications as connectivity is a limiting factor
of any dynamical processes and at the same time temporal
interactions have been shown to have dramatic effects on
the speed and volume of any ongoing dynamical process
[2–4]. For example, disease spreading in static networks can
be mapped to a percolation process leading to a theoretical
understanding of the epidemic threshold as a consequence of
connectivity phase transition [41]. This connection has been
extensively exploited to use the mathematical machinery of
network percolation to derive various theoretical and practi-
cal results on static networks [31,78]. In temporal networks,
such analysis is typically based on theoretical results on se-
quences of static networks [79] or case studies based purely
on simulations [69,80]. The concise theory of temporal net-
work connectivity provided here shows that the reachability
phase transition in temporal networks belongs to the directed
percolation universality class, which is a necessary step for-
ward from the limited description provided by the theory of
static networks. It also indicates that directed percolation may
have many counterparts in reality with the expected scaling
relations.

The mapping presented in this Research Letter allows for
predicting the critical thresholds and the connectivity be-
haviors of a diverse set of systems that can be modeled as
temporal networks. Now, similar to static network connec-
tivity, not only do we have theoretically grounded summary
statistics of the component size distribution (the order parame-
ters and cluster mass, volume, and lifetime), but also we know
ways to find their transitions even in finite-size systems. More-
over, we now possess a theory to predict the behavior of such
random systems and find transition points accurately. Real
networks are often approximated with random graphs, and
the random models are used as reference points: Deviations
from the minimal random models expose important structural
features of the real systems, and conversely, agreement with
these models tells us that the structures, correlations, and
inhomogeneities present in the data do not have a measurable
effect on the connectivity. Although introduction of hetero-
geneities might shift the critical threshold of connectivity in
temporal networks, the directed percolation phase transition
is surprisingly robust to several types of temporal and topo-
logical heterogeneities [53]. Consequently, further research is
required to find the boundaries and extremities of application
of this framework on theoretical and real-world networks.
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The event graph representation of temporal networks suggests that the connectivity of temporal structures can
be mapped to a directed percolation problem. However, similarly to percolation theory on static networks, this
mapping is valid under the approximation that the structure and interaction dynamics of the temporal network
are determined by its local properties, and, otherwise, it is maximally random. We challenge these conditions
and demonstrate the robustness of this mapping in case of more complicated systems. We systematically analyze
random and regular network topologies and heterogeneous link-activation processes driven by bursty renewal
or self-exciting processes using numerical simulation and finite-size scaling methods. We find that the critical
percolation exponents characterizing the temporal network are not sensitive to many structural and dynamical
network heterogeneities, while they recover known scaling exponents characterizing directed percolation on low-
dimensional lattices. While it is not possible to demonstrate the validity of this mapping for all temporal network
models, our results establish the first batch of evidence supporting the robustness of the scaling relationships in
the limited-time reachability of temporal networks.

DOI: 10.1103/PhysRevE.105.054313

I. INTRODUCTION

Connectivity is an essential characteristic of complex net-
works as it determines how far information or influence can
spread in a network structure. Consequently, it governs the
emergence and scale of any macroscopic phenomena often
modelled on networks such as disease spreading, transporta-
tion, or information diffusion, to mention a few examples.
Percolation theory provides a comprehensive understand-
ing that characterizes network connectivity with various
mathematical and algorithmic tools primarily developed for
complex networks. For example, percolation can be mapped
to late-stage results of specific epidemic processes [1–5], such
that the size of percolating components determine the final
size of the epidemic. Meanwhile, the percolation transition
and its related critical behavior explain the disease outcome
close to the epidemic threshold.

However, these theoretical descriptions commonly assume
that the network is static, with links and nodes always present,
ignoring the typical character of several complex structures
where links may vary in time. Since information, disease,
or other effects can pass between two nodes in a network
only at the time of their interactions, the temporal alternation
of links may crucially influence the critical behavior and fi-
nal outcome of any ongoing spreading processes [6–12]. To

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

characterize these processes, one needs to measure connectiv-
ity in temporal networks across time, where components are
defined in terms of network nodes and links and the temporal
distribution of interactions. Consequently, beyond the well-
studied structural heterogeneities of static networks, like in
their node degrees, the effects of temporal correlations leading
to temporal heterogeneities in the interaction dynamics, like
burstiness, become important [13–18]. This is especially the
case for so-called limited-waiting-time processes, where an
effect or information, e.g., a disease or a meme [19], arriving
at a node can pass over to another node only if an interaction
appears within a time window δt . Otherwise, the pathogen
times out, e.g., the patient recovers or the meme becomes
irrelevant, making it impossible to reach other nodes.

Similarly to static networks, the connectivity of temporal
networks passes through a phase transition. However, close
to this critical threshold, temporal networks exhibit different
critical behavior as compared to static structures [20–22]. For
limited-waiting-time connectivity, where the control parame-
ter is δt , this phase transition can be theoretically understood
under some simplifying assumptions about the homogeneous
dynamics of connectivity [22]. Since there is an embedded
direction (or flow) of time, the microscopic dynamics can be
fundamentally irreversible with a broken detailed balance and
nonequilibrium steady state. These results suggest that the
dynamics of percolation on temporal networks are generically
the same as any other system belonging to the directed perco-
lation (DP) universality class, which is characterized by a one-
component order parameter without additional symmetries
and unconventional features such as quenched disorder [23].

The homogeneity approximations used for the derivations
presented in Ref. [22], however, become less grounded when
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the underlying structure deviates from a random graph or if the
interaction dynamics become inhomogeneous. In this paper,
our goal is to build on the theory laid down in Ref. [22] to
investigate further the relation between temporal networks and
directed percolation. In other words, the primary objective
of this manuscript is as follows: to show empirically that
diverse classes of temporal networks, with various degrees of
temporal and spatial heterogeneity, combined with the very
general notion of limited-waiting-time reachability, will show
an absorbing phase transition in connectivity that belongs to
the directed percolation universality class.

In its epidemic interpretation, directed percolation can be
one of the most basic nonequilibrium second-order phase tran-
sitions from fluctuating states into so-called absorbing states,
which exhibit universal features, determined by symmetry
properties and conservation laws. We demonstrate the preci-
sion of this mapping using extensive numerical simulations
and provide further theoretical calculations to study synthetic
temporal networks as directed percolation processes with a
range of temporal and spatial inhomogeneities.

The remainder of Sec. I will be dedicated to laying
the groundwork and presenting the context in which this
manuscript is set: In Sec. I A we will discuss connectivity on
temporal networks, the event graph representation, and mod-
eling spreading processes and Sec. I B will introduce directed
percolation and its characteristics.

Section II is dedicated to an overview of our contributions.
Section II A will describe our mapping of concepts of directed
percolation and temporal networks. Section A provides an
overview of the theoretical results from Ref. [22], which will
be extended further in Sec. A 1 by explicitly deriving some
critical exponents and scaling relations. Section II B will lay
down the algorithmic techniques that make large-scale simu-
lations of spreading processes on temporal networks possible.

Finally, in Sec. III we will describe the experimental setup
and provide numerical evidence for validity of our hypothesis
by application of the methods described previously, while
Sec. IV provides an overview of the implications of the results
and the limitations of our study.

A. Temporal networks and the event graph

A temporal network G = (V, E ) provides representations
of a dynamically changing complex system as a set of timed
interactions known as events E between a set of entities
V = {v1, v2, . . . , vn} known as nodes or vertices during an
observation period T . Each event indicates a time-dependent
interaction between two nodes, e.g., physical contact or
communication between two people or trade between two
commercial entities [24], i.e., e = (u, v, tstart, tend) such that
u, v ∈ V between times of tstart, tend ∈ T (tstart < tend). Note
that this definition can be easily extended to directed events
and to directed or undirected temporal hypergraphs.

Two events e, e′ ∈ E are adjacent if they share at least
one endpoint node in common, {u, v} ∩ {u′, v′} �= ∅, and they
follow each other in time such that �t (e, e′) = t ′

start − tend >

0. Therefore, any temporal network can be represented as a
higher-order static directed acyclic weighted graph known as
the event graph D = (E, ED,�t (e, e′)) [20,25]. Nodes of the
event graph are the events of the original temporal network

and the weight of a link between two connected nodes (adja-
cent events) is then defined as the time difference �t between
the corresponding events.

Every path on the event graph constitutes a causal chain as,
by definition, a path constitutes a list of events where every
two consecutive events are adjacent. Paths in event graphs
are, therefore, equivalent to time-respecting paths in the cor-
responding temporal network representation [26]. Therefore,
calculating time-respecting reachability on a temporal net-
work is equivalent to connectivity on its corresponding (static)
event graph representation. The weakly connected compo-
nents on an event graph determine causal domains, disjoint
sets of events where there can be no causal connections what-
soever between events if they belong to two different weakly
connected components. In addition, as compared to reachabil-
ity, the size and distribution of weakly connected components
are quantities, which are much easier to measure for temporal
networks and they characterize a percolation transition if we
assume an undirected network. Moreover, the sizes of these
components put an upper bound on how much an effect can
spread starting from one of the events in that component [20].

Temporal networks preserve the dynamic properties of the
represented complex system, unlike aggregated static net-
works where this information is lost. Through the studies of
time-varying networks, several new phenomena in human dy-
namics have been explored over the past decades, such as node
and link burstiness [18,27,28], causal, temporal motifs [29],
or the cyclic activation patterns of human interaction activi-
ties [30], to mention a few. As opposed to systems governed
by homogeneous and independent processes, these correla-
tions and the induced temporal dynamics may have significant
effects on various dynamical processes evolving on temporal
networks such as spreading [31,32], reachability [33,34], dif-
fusion [9,35], and opinion formation [36].

The different dynamics of a temporal network are often
straightforward to study through simulations. For example, in
the case of spreading processes, transmission can be modeled
by temporal network events [13–17]. More concretely, in a
physical interaction network, where nodes represent people
and events represent two people coming to close proximity,
each of these contact events will have a probability of trans-
mitting the disease. The disease then spreads to all the nodes
that can be reached via such infecting events from the initially
infected nodes. Similarly, in a network where events represent
communication of information at a specific time, such as
mobile phone calls or email exchanges, it is straightforward
to model the spreading of information by keeping track of the
information nodes have access to at each point in time.

Many dynamics evolving on top of networks, such as
some spreading processes [37–39], social contagion [40–42]
ad hoc message passing by mobile agents [43] or routing
processes [44], can have a limited memory thus can only use
paths constrained by limited waiting times. Limited waiting-
time reachability can be modeled using the event graph, D,
that contains a superposition of all temporal paths [20,26,45].
In a limited waiting-time spreading process unfolding over
a temporal network, either the spreading agent (e.g., the
pathogen in the disease spreading) must be transmitted on-
ward from a node within some time δt or the infection has to
be renewed before that time. In other words, the node must
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participate in a possibly disease-carrying event in δt time or
the process stops and the node reverts to susceptible. There-
fore, all the spreading paths in the network are δt-constrained
time-respecting paths. Let us call two adjacent events e and e′
as δt-adjacent if �t (e, e′) � δt . A subset of the event graph
D with an upper threshold of weights no greater than δt , i.e.,
where directed links indicate δt adjacency, enables us to calcu-
late reachability for δt limited-time spreading process for the
corresponding temporal network. Therefore, the event graph
encapsulates a complete set of δt-constrained time-respecting
paths for all values of δt simultaneously.

B. Directed percolation

The waiting-time limit δt can be regarded as the control
parameter of a continuous phase transition, where connectiv-
ity in the event graph is determined by δt-connected paths
of events. As the value of maximum waiting time decreases,
more and more of the links of the event graph get removed,
where each deleted link corresponding to an adjacency rela-
tionship between two events that are temporally more than
δt apart. This leads to a drop in connectivity in the event
graph, which is exactly equivalent to the drop in connectiv-
ity on the temporal network. In order to characterize these
phase transitions, unlike characterizing the superficially sim-
ilar phase transitions that take place when removing links in
static (undirected) networks, we need to consider a percolation
framework that can explicitly model the one-way flow of time.

Directed percolation is a paradigmatic example of dynami-
cal phase transitions into absorbing states with a well-defined
set of universal critical exponents and is often used to model
phenomena with inherent directionality, such as fluids pass-
ing through porous media [23,46–48]. Originally introduced
as a model for directed random connectivity [49], directed
percolation attracted scrutiny in percolation theory in the late
seventies [50]. Since then, a considerable body of work has
been devoted to this approach of interpretation in the literature
since the critical behavior of many stochastic many-particle
nonequilibrium processes can be shown to belong to the di-
rected percolation universality class. Directed percolation has
applications in various domains at multiple scales ranging
from galaxies to semiconductors [51–54].

As the simplest model exhibiting a transition between ac-
tive and absorbing phases [46], it is straightforward to define
and implement models governed by directed percolation, e.g.,
in the case of lattice models [55–61]. Directed percolation,
however, does not appear to be an integrable model and its
critical behavior is highly nontrivial. Moreover, it seems that
the basic features of directed percolation, such as nonfluctuat-
ing states, are quite difficult to realize in nature [62]. Another
fundamental problem is quenched disorder due to microscopic
inhomogeneities of the system [23]. One of the earliest un-
ambiguous and robust experimental realizations of a system
exhibiting critical behavior in the directed percolation class
was for the rather specific case of liquid crystal electrohydro-
dynamic convection [63]. Another experimental evidence was
reported in 2016 in the case of transition to turbulence [64].
Due to the simplicity and robustness of directed percolation,
it seems to be a good model for explaining ubiquitous phase
transitions in many real-world phenomena, especially in the

so-called contact processes [4,33,65–72] in the realm of tem-
poral networks [24].

Before presenting the mapping between reachability in
temporal networks and the concepts in directed percolation,
for the remainder of this section we will review these concepts
for the case of the simple infinite lattice. Let us take the ex-
ample of a spreading process across time in an infinitely large
d-dimensional square lattice: Assume that each infected (or
occupied) node can infect any of its neighbors independently
with probability p at each tick of a discrete timer. Let us also
assume that an infected node recovers (becomes unoccupied)
in one tick of the clock after infection unless it is reinfected by
a neighbor. This configuration is denoted in many sources as a
d + 1-dimensional lattice, substituting the temporal axis with
another discrete spatial dimension with the only difference
that, unlike the other d dimensions, this one has an inherent
directionality. Throughout the rest of this section, we will
continue to use the space and time analogy to facilitate a better
transition to modeling phenomena on temporal networks.

The dynamics of this spreading process is defined by the
topology and dimensionality of the medium of percolation
and competition between two processes: the probability that
an infected node infects each of its neighbors in a single tick
of the clock, or “reproduction” from the perspective of the
spreading agent, and the time it takes for each infected node
to recover, or “self-annihilation” or “death” of the spreading
agent. In the many classic representations of directed perco-
lation, the reproduction probability is often denoted by the
parameter p and the “self-annihilation” is set to happen in
exactly one tick of the clock. For large-enough values of p,
the system will forever stay in an “active state” where there
is a nonvanishing density of nodes infected (occupied) at all
times. Conversely, if the annihilation process has the upper
hand, then the system eventually transitions irreversibly into
an “absorbing phase” where no occupied nodes are left in the
lattice and the spreading agent is extinct.

More generally, let us say the reproduction and self-
annihilation process respectively happen at rates μp and μr .
Let us assume that at t = 0, nodes are uniformly occupied
with density ρ0. To write a mean-field rate equation for occu-
pation density ρ(t ), we need to take into account how often
more than one spreading agent (pathogens) simultaneously
occupies (infects) the same node, in which case only one new
node is occupied. Let us only consider the rate μc at which two
other nodes simultaneously infect a single node and assume
the probabilities of three or more simultaneous infections are
small. In this case, the rate equation is of the form

∂

∂t
ρ(t ) = τρ(t ) − gρ(t )2, (1)

where the control parameter τ = μp − μr is the manifesta-
tion of the competition between reproduction and death as
described above and coupling constant g = μc describes the
events of infecting a node already infected by another neigh-
bor [23]. This equation has a steady state at limt→∞ ρ(t ) =
ρstat(τ ) = 0 which corresponds to the aforementioned ab-
sorbing phase. Furthermore, for τ > 0 the value of ρ(t )
approaches a stationary occupation density of limt→∞ ρ(t ) =
ρstat(τ ) = τ/g, which is identified as the order parameter of
the directed percolation process. At exactly τ = 0, occupation
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density decays algebraically with time ρ(t ) ∼ (ρ−1
0 + gt )−1.

Naturally, for values of τ < 0 the system eventually arrives at
the absorbing phase ρ(t ) → 0 in finite time.

More generally, starting from a homogeneously occupied
initial condition, order parameter ρstat(τ ) of a system in the
directed percolation universality scales as ρstat(τ ) ∼ τβ , when
control parameter τ is close to τc = 0. For τ > 0, density
decays algebraically as ρ(t ) ∼ t−α where in the mean-field
regime (i.e., d � 4), β = α = 1. In the case of a spreading
process controlled by a percolation probability p introduced at
the beginning of this section, it can be shown that τ ∝ p − pc

where critical percolation probability pc is a function of topol-
ogy and dimensionality of the percolation medium [73,74].

Alternatively, we can focus on the ramifications of starting
from a single seed of infection, as opposed to a homoge-
neous initial distribution of occupied nodes. A characteristic
property of this scenario is survival probability P(t ): The
probability that a spreading process starting from a single
seed would still be in the active phase (ρ(t ) > 0) at time t .
Similarly to occupation density ρ(t ), at criticality τ = τc =
0 survival probability also decays algebraically with time
P(t ) ∼ t−δ . A second alternative for order parameter is the ul-
timate probability of survival Psurv(τ ) = limt→∞ P(t ). When
the control parameter is close to the critical threshold τ → 0−,
the ultimate probability of survival scales algebraically as
Psurv(τ ) ∼ τβ ′

.
Continuous phase transitions in models with timelike di-

mensions generally have the same system of two separate
order parameters, controlled by two different critical expo-
nents β and β ′. For the case of directed percolation, however,
“rapidity-reversal symmetry,” an invariance property under
time reversal, ensures the two exponents have the same value
β = β ′ [75] which implies that P(t ) and ρ(t ) are at least
asymptotically proportional as t → ∞, and in some cases
exactly equal P(t ) = ρ(t ) [23]. Rapidity-reversal symme-
try limits the number of independent critical exponents to
three [76,77].

1. Characteristic quantities of the directed percolation

The single-source initial condition also allows us to define
additional interesting characteristic quantities in the absorbing
phase, which might lend themselves to experimental observa-
tion. Let us define pair-connectedness function c( �r1, t1, �r2, t2)
as the probability that a path exists from a node with spatial
coordinates �r1 at time t1 and another in �r2 at time t2. Note
that the definition of spatial coordinates for nodes as a d-
dimensional vector �ri implies that the percolation medium
and node i is embedded in a d-dimensional space, e.g., a
d-dimensional lattice. Assuming that the percolation medium
is invariant with respect to translations across time and space,
we can simplify the pair-connectedness function by fixing the
origin on the source node and denote the pair-connectedness
function as c(�r, t ). Mean cluster mass M is defined as the
integration of the pair-connectedness function across time and
space:

M =
∫ ∞

0
dt

∫
d�rc(�r, t ), (2)

which, with control parameter close to the critical threshold
τc = 0 scales like M ∼ (−τ )−γ where γ = ν‖ + dν⊥ − β −
β ′. Similarly, mean spatial volume V can be defined as the
number of unique nodes that will ever get infected in a single-
source spreading scenario. As with the case of the cluster mass
M, spatial volume scales through a power relationship V ∼
(−τ )−υ close to the critical threshold where υ = dν⊥ − β ′.
It is possible to think of spatial volume V as the size of the
projection of the percolation cluster over the d-dimensional
spatial plane, i.e., over the original d-dimensional lattice. Pro-
jection of the same cluster on the temporal dimension will
define the survival time of the cluster, which is distributed
according to the probability of survival P(t ).

The homogeneous, fully occupied initial condition, on the
other hand, allows us to study the response of a system to an
external field h on the order parameter static density ρstat. For
the case of directed percolation, an external field can be im-
plemented as the spontaneous occupation of nodes at a rate h.
A positive external field deprives the system of the possibility
of ever transitioning into an absorbing phase. Susceptibility
χ is defined as the magnitude of the response generated by a
minuscule disturbance in the external field

χ (τ, h) = ∂

∂h
ρstat (τ, h), (3)

which diverges algebraically as the control parameter τ con-
verges to the critical threshold τc = 0, χ ∼ |τ |−γ where γ is
the same exponent as the mean cluster mass M. For the rest
of this paper, when not specified, susceptibility χ is studied at
minuscule values of external field (h = 0) as τ converges to
the critical threshold τc = 0. In practical terms, susceptibility
is a useful tool for finding the transition point, as unlike the or-
der parameters, we do not need to define an arbitrary threshold
for what constitutes a small or large value for a quantity such
as M(t ) or V (t ) close to the transition point in a finite system.
Instead, the susceptibility will typically show a peak even in
finite systems, which are discussed in more detail in Sec. I B 2.

2. Finite-size scaling properties of the system

While the dynamics described previously explain the be-
havior of an infinitely large system, measuring properties of
infinitely large systems is a rather involved task. Verifying that
the behavior of a system at criticality is explained by a specific
set of critical exponents is often easier performed by studying
the finite-size scaling properties of the system. This can be
carried out by measuring a set of quantities for realizations
at different scales and plotting the universal scaling function
of each quantity as a function of scale-invariant ratios. If the
exponents used are correct, then all the scaling functions of
different linear system sizes for the same quantity should
collapse on top of each other.

The effect of the finite size of the system manifest them-
selves as deviations from the scaling laws as described before
and their effects are measurable after some characteristic size-
dependent amount of time has elapsed since the beginning
of the simulation. For example, while in an infinitely large
system in active phase τ > 0 the system will forever stay in an
active phase, a finite system will always have a nonvanishing
probability of transitioning to the absorbing state due to fluc-
tuation of the order parameter. These finite-size effects take
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place at a characteristic time t f that scales as t f ∼ lz where
z = ν‖/ν⊥ is the so-called dynamical exponent and l is the
lateral (or linear) size of the system as opposed to system size
N measured in number of nodes, where N ∝ ld .

In phenomenological scaling theory simple scaling is
assumed for absorbing phase transitions. This means that
large-scale properties of the system are invariant under scale
transformations with the control parameter close to the critical
threshold. A multiplicative transformation, or “concentra-
tion,” of the control parameter τ by a factor of λ, τ �→ λτ

would result in rescaling of other quantities as

t �→ λ−ν‖t l �→ λ−ν⊥ l

ρ �→ λβρ P �→ λβ ′
P

h �→ λσ h χ �→ λ−γ χ,

(4)

where t and l denote timelike and lengthlike quantities respec-
tively.

More specifically, scale invariance mandates very specif-
ically how a quantity will change under multiplicative scale
change. As an example, let us study changes of ρ(t, l ),

ρ = f (t, l ) �→ λβρ = f (λ−ν‖t, λ−ν⊥ l ), (5)

where t is time from initial infection seed and l is the linear
system size.

Since this relationship is valid for all values of λ, we can
remove one parameter of the function by selecting a special
value λ = l1/ν⊥ ,

lβ/ν⊥ρ = f (l−ν‖/ν⊥t, 1) = F (l−ν‖/ν⊥t ), (6)

where the function F (x) is referred to as the “(universal)
scaling function” of its corresponding quantity, in this case,
density ρ. The parameter to this function l−ν‖/ν⊥t is in it-
self invariant to scale transformations. This parameter and
those similarly derived for other quantities are often known as
“scale-invariant ratios.” The function F (x) is universal, mean-
ing that if measured to sufficient accuracy, then we obtain
exactly the same type of scaling function for systems with
similar boundary conditions and shape for any phenomena in
the directed percolation universality class [23].

The value of each exponent is only a function of a few
large-scale properties of the system, such as the number
of spatial dimensions of the system. There exists an upper
critical dimension dc where systems with spacial dimension-
ality d � dc all follow the same set of values for critical
exponents, which are exactly equal to those derived through
mean-field estimation. For the case of the directed percolation
universality class the upper critical dimension has a value of
dc = 4 [23].

II. METHODS

A. Directed percolation in temporal networks

Let us now take the case of δt limited-time spreading
from a single source on a temporal network. Similarly to the
classic directed percolation single-source spreading process,
each temporal network node can participate in the spreading
process by becoming infected, infecting others and recover-
ing multiple times. Temporal networks are different from the

archetypal directed percolation systems presented in Sec. I B
in that they do not present a regular lattice or metric space
in the spatial dimension. Furthermore, there is typically no
discrete structure in the temporal dimension, which is usually
modeled as a continuous axis. Nevertheless, if the various
concepts such as order parameter, control parameter, and clus-
ter sizes are defined carefully, then temporal networks and
limited waiting-time connectivity can be mapped to directed
percolation [22].

To put it in the same reference frame as with other ab-
sorbing phase transitions, changing the parameter δt , in this
scenario, controls the relative occurrence of “annihilation”
and “multiplication” processes. A small-enough value of δt
will lead to a situation where spreading scenarios will even-
tually die out, at which point the system enters an absorbing
phase. Similarly, as δt grows, a spreading agent will be able
to avoid extinction for longer time, until after some threshold
δt > δtc a random spreading scenario will not die out (in
an infinitely large network). As discussed in Sec. I A, such
spreading scenarios are closely related to various properties
of the δt thresholded limited waiting-time event graph D.

As illustrated in Fig. 1, the projection of the spreading
cluster over the spatial plane amounts to a subset of temporal
network nodes V that has ever participated in the spread-
ing process. This can be measured by calculating the mean
number of unique temporal network nodes involved in the
out-components of the event graph. The (ensemble) average
number of unique nodes participating in single random source
spreading processes is analogous to mean spatial volume V .
The projection of the spreading cluster over the temporal
axis is equal to the time window from the beginning of
the spreading process to its end. The ensemble average of
this time duration is analogous to mean survival time T .
The sum of the duration of infectiousness for all the nodes,
i.e., the integration of the pair-connectedness function, would
therefore be analogous to spatial and temporal integration
of the pair-connectedness function or mean component mass
M. Note that the duration of the infectiousness is equal in
all of the events, therefore, we use the number of reachable
(i.e., possibly infection-carrying) events as a proxy for M,
ignoring the overlaps. The above-defined quantities can be
measured as features of the event graph. The average number
of events in the out-component of a node in the event graph
(equivalent to an event in the temporal network) measures
the number of reachable events. The survival probability P(t )
can be similarly defined over an ensemble of single-source
spreading instances based on the distribution of the lifetime
of each spreading scenario, accounting for the finite temporal
window of the simulation of the temporal network using a
Kaplan-Meier estimator [78].

Another scenario is the simulation of the spreading pro-
cess from homogeneous, fully occupied, initial conditions.
Translating this from classic directed percolation poses a new
problem; a homogeneous initial condition cannot translate to
a “full row” of occupied nodes since we are dealing with
continuous-time as opposed to the typical directed percolation
case of discretized time presented in Sec. I B. Rather, a better
translation of the fully occupied initial condition to continuous
time is to assume all nodes to be occupied at the beginning
of the observation period t = min(T ), or more accurately by
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FIG. 1. Two spreading scenarios starting from random events [marked with black circles on (b) and (c)] represented over (a) temporal
network, (b) δt-limited event graph, and (c) reduced event graph of a temporal network built from a one-dimensional grid of 40 nodes (displayed
on the left side) with Poisson activation of events with mean interevent time 1 unit of time, simulated for 20 units of time. The adjacency
relations have a maximum waiting time δt = 0.8 unit of time. Spatial volume V can be visualized as the mean size of projection of a spreading
cluster on the spatial plain, i.e., the static base network on the vertical axis, whereas survival time T is equivalent to the mean size of projection
of the cluster on time (horizontal) axis. While measuring a direct analog to component mass M, integrating the pair-connectedness function
across time and space equivalent to the mean sum of lengths of colored horizontal lines in (a) is not straightforward with the event graph
representation. It is possible to show that the mean number of uniquely counted events involved in the spreading process, corresponding to the
cardinality of the out-component of the initial event here represented by the total number of colored nodes in the event graph, show the same
scaling behavior. (d) Homogeneous, fully occupied initial condition with the occupied events shown in a darker shade than unoccupied events
shows the decline and eventual stabilization of the occupation density as time grows. In this scenario, all nodes are considered occupied for
time −∞ < t < 0, which translates to the occupation of all events in period 0 � t < δt and all events in their out-components.

assuming all nodes to be occupied for all values of t where
t � min(T ). Occupation density ρ(t ) is defined as the frac-
tion of infected nodes at time t . Stationary density ρstat(τ ) is
therefore defined as occupation density after the system had
enough time to reach a stationary state. We can also emulate
the effects of an external field h in this scenario: In continuous
time, this is equivalent to each node spontaneously becoming
occupied through an independent Poisson point process with
a rate of h. Susceptibility χ (τ, h) can then be measured, from
Eq. (3), by the rate of change in stationary density as external
field changes.

B. Empirical methods for estimation of characteristic quantities

In practice, we can estimate M, V , T , and P(t ) on the event
graph by finding all the out-components, i.e., every reachable
event starting from every event [see Fig. 1(c)]. Calculating
the exact set of out-components for every event in the event
graph is time and memory intensive. However, if we are only
interested number of events or number of unique nodes that
participate in those events, as opposed to the full set of events
in the out-components, then we can use probabilistic cardinal-
ity estimation data structures to estimate out-component sizes
with arbitrary precision in O(|E | log |E |) time, as opposed to
O(|E |2) time required for exact calculation [45]. Minimum
and maximum time of all events in the out-component can be

exactly calculated in O(|E | log |E |) time. Calculating prop-
erties of the in-component of an event is possible through a
simple reversal of direction of all links in the event graph and
applying the same algorithms.

Similarly, in the homogeneous fully occupied initial condi-
tion scenario, we do not need to directly estimate occupation
density ρ(t ), stationary occupation density ρstat(τ ), and sus-
ceptibility χ (τ, h) via naive algorithms, which would explic-
itly compute these measures by simulating propagation. The
properties of homogeneous, fully occupied, δt-constrained
reachability can be estimated by marking as occupied any
event that is in the out-component of at least one event with
time −∞ < t < t0. This can be accomplished by running
the in-component size estimation algorithm [45] once over
the whole network, recording minimum observed time in in-
component of each event and marking those with minimum
in-component time smaller than t0 as occupied. In practice,
temporal networks are only recorded or generated for a finite
window of time tmin < t < tmax. As there are no adjacency
relationship between events more than δt apart temporally,
any event that has at least one event in its in-component
with time tmin < t < tmin + δt can be considered occupied.
Figure 1(d) shows all occupied events (dark gray) with the
initial condition that assumes all nodes are occupied from
−∞ < t < 0. The density of occupied events, which corre-
sponds to particle density ρ(t ), can be estimated from the
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event graph representation by the number of occupied nodes
in a band of time divided by the area covered by the band, i.e.,
number of nodes multiplied by the width of the band.

Normally, calculating the effects of an external field h
would require simulating a fully occupied initial condition,
marking some nodes randomly selected with rate h as occu-
pied, computing their out-components, and measuring how
many new events got occupied. As we are interested in the
effects of a minuscule positive external field, indicated by
susceptibility χ (τ, 0), we can instead calculate the effects
of spontaneously marking exactly one random event in the
whole network as occupied using probabilistic counting and
in-components of all events (i.e., looking back in time). If the
number of events in the in-component of an event e is denoted
as |E in(e)| and the minimum time among all events in its
in component as t in

min(e) = min(u,v,t )∈E in (e) t , then the expected
number of spontaneously occupied events when a minuscule
external field h is applied can be estimated as

∑
e∈E Poccupied(e)

where

Poccupied(e) =
{

1 if t in
min(e) < t0

|E in (e)|
|E| otherwise

. (7)

In this scenario, the respective value for the external field
that would spontaneously occupy on average one event is
proportional to h ∝ 1/|E |. We approximate ρ(t ) by number
of occupied events within a δt time window divided by spa-
tiotemporal hypervolume of the time window δt × |V|. The
estimate for ρ(t ) can in turn be used to approximate quantities
like stationary density ρstat (τ ) and susceptibility χ (τ, h).

III. RESULTS

A. Experimental setup

In this section, we focus on validating and exploring the
limits to our hypothesis that δt limited-time spreading in many
forms of temporal networks belongs to the directed percola-
tion universality class. We do this by performing single-seed
and homogeneous initial-condition spreading simulations fol-
lowing the method defined in Sec. II A and explained in detail
in Sec. II B. By measuring various observables for networks
of different sizes as described in Sec. I B 2, we can verify
whether for each quantity the corresponding universal scaling
functions collapse for systems of different finite sizes when
using the same values of critical exponents β, β ′, ν‖, and ν⊥
as that of DP corresponding to the dimensions of the system as
a previous mean-field approximation and experimental setups
for the directed percolation.

The experiments are performed on a variety of synthetic
temporal networks. The generation procedure consists of gen-
erating a static base network corresponding to the aggregate
network and generating events, i.e., activations or timestamps,
for each link based on some temporal dynamic. In total,
we analyzed 26 combinations of base networks and link-
activation processes. In order to perform the finite-size scaling
analysis, we computed all the statistics for 10 network sizes,
starting from N = 28 nodes and increasing the size by a
factor of two until we reached N = 217 nodes. For the case
of d-dimensional square grids where d ∈ {2, 3, 4}, however,
closest powers of d to the powers of two from 28 to 217 was

used with a periodic boundary condition, to provide spatial
translational invariance. Each statistic was calculated as the
average of at least 256 (up to 4096) realizations and each
realization of the largest configuration consists of around
3.7 × 107 events. No sampling of spreading scenarios was
required for each network’s realization, as the effect of start-
ing a spreading process from any possible combinations of
nodes and times could be gathered in one pass as described in
Sec. II B. See the Supplemental Material [79] (which includes
Refs. [80–86]) for a more detailed overview of the experimen-
tal setup.

Static base networks are either (a) one to four-dimensional
square lattice grids with periodic boundary conditions, (b)
random regular graphs with specified average degree [87,88],
or (c) Erdős–Rényi G(n, p) random networks with specified
expected average degree [89]. For the random networks, we
chose the average degrees 8 for the Erdős–Rényi graphs and
9 for the random regular graphs (such that both networks
have the same expected excess degree). The higher degrees
of random networks ensure that the probability of generating
networks with large isolated components remains negligible
and that, even locally, the network would be of high-enough
dimensionality to be in the mean-field regime above the upper
critical dimension dc = 4.

Temporal dynamics of the links are either governed by
(a) Poisson processes, i.e., exponential interevent times; (b)
bursty processes, i.e., renewal processes with power-law in-
terevent time distributed as ∝ �t−γ with exponents γ ∈
{2.05, 2.2, 2.8, 5.2} and minimum interval cutoff set so that
the expected interevent would be equal to 1; and (c) Hawkes
independent self-exciting processes with different parameter
sets. The Hawkes univariate exponential self-exciting pro-
cess [90] is defined by the conditional intensity function

λ∗(t ) = μ + αθ
∑
ti<t

e−θ (t−ti ). (8)

The parameters of this formulation of the Hawkes process are
(1) background (or exogenous) intensity of events μ indicat-
ing the random probability of events happening without being
caused through self-excitement; (2) the infectivity factor α,
which can be interpreted as the expected number of induced
self-exciting events per each event; and (3) the rate parameter
of the delay θ . Based on the properties of exponential kernel
used in defining Eq. (8), 1/θ is the expected interevent time
between an event (e.g., a coincidental social interaction) and
its corresponding induced self-exciting event (e.g., the follow-
up social interactions) [91].

As the unit of time is arbitrary, temporal processes are
scaled, without loss of generalization, so that they produce
timestamps with a mean interevent time equal to 1. The pro-
cesses are initialized in their stationary state, and in practice,
the first timestamp for each event is generated through resid-
ual time distribution of each process, except for the case of
Hawkes process where the process is allowed a burn-in time
equal to the simulation time window before the first times-
tamp is recorded. The temporal processes of pairs of links
are simulated independently of each other. Figure 2 shows
a visualization of the different methods of generating event
activations. Temporal networks were simulated for a time
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FIG. 2. Sample timestamps from a single realization (activations
of a single link) with different temporal dynamics. Each point repre-
sents a single activation at a specific time. The points are scattered
over the vertical axis to avoid overlaps in the visualization. All
timestamps were generated for 256 units of time with parameters or
minimum cutoffs that would result in an expected interevent time of
1. Equation (8) defines the parameters and the intensity function of
the Hawkes univariate exponential self-exciting process.

window of at least T = 64 and up to T = 8192 units of time.
See Supplemental Material [79] for the exact experimental
setup for each system size. The difference in system sizes
and time windows for the simulations were necessitated by
the limitations and optimal utilization of the computational
facilities.

B. Estimating the critical threshold δtc and
the critical exponents β, β′, ν‖, and ν⊥

Best estimate of the critical exponents β, β ′, ν‖, ν⊥ and
critical threshold δtc can be determined by finding the values
of these exponents that would produce the best data collapse
for the universal scaling functions corresponding to ρ(t ), P̂(t ),
M(t ), and V (t ). The quality of collapse, in turn, can be as-
sessed by comparing the deviation of the scaling function
curves for different system sizes from the average trajectory.
Here, for each of the quantities P̂(t ), ρ(t ), M(t ), and V (t ),
we calculated one trajectory for finite-size scaling function
for each system size, as defined for example for the case of
ρ(t ) by Eq. (6). As the tested value of critical exponents and
δtc gets closer to the actual critical threshold, the curves for
different sizes should more closely collapse on top of each
other. Plotted with the correct values of critical exponents and
critical threshold, we expect to see all trajectories collapse into
one with the possible exception of very small values of t . To

FIG. 3. Root-mean-square (logarithmic) deviation of scaling-
corrected functions of probability of survival P̂(t ), density ρ(t ), mass
M(t ), and volume V (t ) for different system sizes from average tra-
jectory shows a sharp drop at δtc due to data collapse. Each instance
of the network is made through realizations of (a) Erdős–Rényi static
network 〈k〉 = 8 and Poisson process λ = 1 activations; (b) random
9-regular networks with bursty (power law with minimum cutoff)
interevent time distribution with mean 1 and exponent γ = 2.8;
(c) Erdős–Rényi static network 〈k〉 = 8 and Hawkes univariate ex-
ponential self-exciting process with parameters μ = 0.2, α = 0.8,
and θ = 1.0; and (d) one-dimensional grid with periodic boundary
conditions (a circle) and Poisson process λ = 1 link activations.
Refer to Sec. III A for the definitions of the parameters.

quantify the quality of a collapse, we measure the mean curve
in the area where all system sizes have defined values for
the scaling function and measure the root-mean-square differ-
ence of all points from all system sizes to the mean curve. The
errors were measured after logarithmically scaling the values
to account for the power-law nature of the scaling functions.
Sum of errors for the collapse of P̂(t ), ρ(t ), M(t ), and V (t )
was used in evaluating each set of parameters.

In order to assess collapse of the universal scaling func-
tions, we first determine a value for δtc for each network
configuration. That is, the best candidate for δtc is selected
based on the least total error for collapse of P̂(t ), ρ(t ), M(t ),
and V (t ) assuming DP critical exponents. Figure 3 shows this
total error of collapse for two network configurations. This
shows is a clear minimum for each configuration indicating
the critical value δtc, which is consistent across P̂(t ), ρ(t ),
M(t ), and V (t ) trajectories. The resulting estimates for δtc can
be used to visually verify directed percolation critical expo-
nents and our selected optimal value of δtc for each system by
plotting the finite-size universal scaling functions of different
system sizes. In total, we produce collapses for eight charac-
teristic quantities measured in a single source or homogeneous
initial conditions. Figure 5 shows these collapses measured for
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FIG. 4. Total error of collapse of universal scaling functions of
M(t ), V (t ), P̂(t ), and ρ(t ) for Erdős–Rényi networks 〈k〉 = 8 and
Poisson process activation λ = 1 as a function of β and β ′. In
these visualizations we set ν⊥ = 0.5, ν‖ = 1, and δtc = 0.08421,
and vary one of these parameters such that the three panels from
left to right correspond to values (a) ν⊥ ∈ {0.34, 0.5, 0.66}, (b) ν‖ ∈
{0.84, 1, 1.16}, and (c) δtc ∈ {0.0840, 0.08421, 0.0844}. Note that
the center panel is repeated across the rows and always has parameter
values ν⊥ = 0.5, ν‖ = 1, and δtc = 0.08421. We see that there is a
minimum in the error close to β = β ′ = ν‖ = 1 and ν⊥ = 0.5 within
this five-dimensional space.

regular networks with bursty dynamics (renewal process with
power-law interevent times) and Erdős–Rényi networks with
a Hawkes self-exciting process dynamics. The full set of plots
for all 26 configurations are shown in the Supplemental Mate-
rial [79]. In all cases, a satisfactory collapse can be observed
for at least probability of survival P̂(t ) and density ρ(t ) and in
most cases, other quantities show a good collapse as well. It is
important to note that quantities that depend on measuring val-
ues as time approaches infinity, e.g., ρstat(δt ) and χ (δt ) have
generally lower quality of measurement and collapse since the
time to reach a stable value for these increases substantially
close to criticality [46].

Table I (column “Est. δtc”) shows our best estimate of the
critical threshold δtc for each configuration using the method
described above. As the systems become rapidly more and
more connected after the critical threshold, a lower value
for the critical threshold δtc indicates higher, or more ro-
bust, spatiotemporal connectivity, meaning that the same δt
limited-time spreading would result in a larger number of
reachable nodes, V (δt ), or larger number of reachable events,
M(δt ). When modeling infectious disease spreading as di-
rected percolation on temporal networks, larger values for
V (δt ) and M(δt ) may indicate larger epidemic sizes and the
total number of human hours of infection in the population,
respectively.

These results indicate that within each spatial configura-
tion, increased burstiness (as indicated by lower value for the

power-law exponent γ ) generally leads to a lower value for δtc
threshold and higher connectivity. Furthermore, for the case
of the self-exciting process, increasing the expected number
of self-induced events, as indicated by α, generally results
in a lower value for δtc (higher connectivity). While it was
previously understood that a wide range of temporal inho-
mogeneities slows down spreading processes over temporal
networks [13], these results demonstrate that certain temporal
inhomogeneities, e.g., a highly bursty or self-exciting tem-
poral dynamic, can enable a more limited spreading agent
(expressed in terms of a maximum waiting time) to spread to
a wider set of nodes. For example, spreading processes with
maximum waiting time between 0.063 < δt < 0.084 over an
Erdős–Rényi networks 〈k〉 = 8 will spread to a much larger
set of nodes and span a longer span of time if the link acti-
vations are highly bursty (γ = 2.05) compared to a Poisson
process with the same mean interevent time, as the latter
will be spreading in the subcritical regime compared to the
supercritical regime for the former.

It is also interesting to note that while the random spa-
tial configurations, namely random 9-regular networks and
the Erdős–Rényi networks 〈k〉 = 8, both result in networks
with the same expected excess degree value, the Erdős–Rényi
networks with higher levels of spatial inhomogeneity, which
manifests as a wider spread degree distribution, can be ob-
served to have a lower δtc critical threshold. While testing on
a wider range of spatial (structural) inhomogeneities would be
required before a conclusion is reached, these results might
hint at a similar behavior as with temporal inhomogeneities,
namely that introducing certain spatial inhomogeneities might
result in higher connectivity in the sense that the same limited-
time spreading agent can eventually spread to a wider share of
the network.

Additionally, we present a method to assess the quality of
a collapse for a range of different values of critical exponents
(β, β ′, ν‖, and ν⊥) and δtc. A five-dimensional grid search
for optimal values for critical exponents and δtc based on
the quality of collapse for P(t ), ρ(t ), M(t ), and V (t ) shows
that the total error declines around critical exponent values
close to that of directed percolation, i.e., β = β ′ = ν‖ = 1
and ν⊥ = 0.5 for mean-field regimes and their respective
DP values for lower-dimensionality square grid networks.
Figure 4 shows for Erdős–Rényi static networks with 〈k〉 = 8
and Poisson process link activation, the β × β ′ plane from the
five-dimensional grid search with two sandwiching parallel
planes along each of the ν‖, ν⊥, and δtc dimensions. This ver-
ifies that there is a minimum close to β = β ′ = ν‖ = 1, ν⊥ =
0.5, and δtc = 0.08421 for total error of collapse of P(t ),
ρ(t ), M(t ), and V (t ). Similar plots for some other network
configurations (along with a different two-dimensional slice,
ν‖ × ν⊥) can be viewed in the Supplemental Material [79].
It is important to note that while other combinations of pa-
rameters in the grid might lead to other local optima, visual
inspection of the resulting collapse show that to be mainly
numerical artifacts where the total error changes rapidly close
to extreme values of the parameters (i.e., critical exponents
and δtc) where only a very small fraction of the trajectories
for different finite sizes actually overlap.

Furthermore, for each of the critical exponents, we can
measure an estimation error based on this five-dimensional
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FIG. 5. Universal scaling functions for δt limited-time reachability over [(a), (c), (e), (g), (i), (k), (m), and (o)] random 9-regular network
with bursty (heavy-tail with minimum value cutoff) link activation with mean interevent time of 1 and exponent γ = 2.8 and [(b), (d), (f),
(h), (j), (l), (n), and (p)] random Erdős–Rényi network 〈k〉 = 8 with Hawkes univariate exponential self-exciting process link activation with
parameters μ = 0.2, α = 0.8, and θ = 1.0. The finite-size scaling is performed for the following single-source scenarios: [(a) and (b)] The
mean component mass M as function of δt close to critical point and [(c) and (d)] as function of time t at the critical point, [(e) and (f)] the
mean component volume V as function of δt close to critical point, and [(g) and (h)] as function of time t at the critical point and [(o) and
(p)]. Survival probability P̂ as function of time t at the critical point. For fully occupied initial conditions the finite-size scaling is performed
for [(k) and (l)] the occupation density ρ as function of time t at the criticality, and both [(i) and (j)] the static density ρstat and [(o) and (p)]
susceptibility χ as function of δt close to the critical point. The collapse of the universal scaling functions validates the hypothesis that these
systems are governed by the same critical exponents as in directed percolation in the mean-field regime. See Sec. III A for the full definitions
of the parameters.

parameter grid. For each exponent, we find a range of values
where, assuming that all other exponents are fixed at their DP
values, would produce collapses of higher or equal quality
compared to the DP value of that exponent. The sizes of
these ranges, which by definition includes the DP value for
all exponents, provides a confidence interval for the range of
possible exponent values that are able to explain the behavior
of the system with at least the same quality as that of directed
percolation. As shown in Table I, these errors are in most
cases only a few percentages, with a notable exception of the
highly bursty renewal processes with γ = 2.05. Simulating
power-law distributions becomes a much harder problem as
the magnitude of the exponent approaches 2. Close to this
exponent, it takes a larger and larger number of realizations for
the properties of the population, e.g., average interevent time
for bursty temporal dynamics, to converge. It is also possible
that the large estimation error is an indicator that the system is
approaching a breakdown of one of the key symmetries, with
the most likely candidate being rapidity-reversal symmetry
based on the fact that the estimation error for β ′ is much larger
than that of the other exponents.

C. Estimating critical exponents by simulating very
large systems

As discussed before in Sec. I B, the effects of the finite size
of the system manifest at characteristic times t f ∝ Nν‖/dν⊥ in
the form of fluctuations that causes the transition of the system
to the absorbing phase. At times much smaller than t f the sys-
tem shows approximately the scaling behavior of an infinitely
large system where at criticality, ρ(t ) ∼ t−α and P̂(t ) ∼ t−δ

where α = β/ν‖ and δ = β ′/ν‖. On the other hand, the power-
law scaling behavior becomes visible at times comparable to
the mean interevent time of the dynamic process but not up to
arbitrarily infinitesimal values of t . Given these properties, we
fitted two power-law functions using the least-squares method
to the results of experiment with the largest system size for
the range of time 2 < t < 0.04 × Nν‖/dν⊥ on ρ(t ) and P̂(t )
to derive exponent α and δ. Figure 6 shows one such fitting
for a system made from Erdős–Rényi networks with 〈k〉 = 8
and N = 217 nodes and bursty (power law with minimum
cutoff) interevent time distribution with mean 1 and exponent
γ = 2.8. Table I (columns Est. α and Est. δ) shows the best
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TABLE I. Column “Est. δtc” shows the best candidate for critical threshold δtc selected by minimizing the collapse error of the universal
scaling functions for probability of survival P̂(t ), density ρ(t ), mass M(t ), and volume V (t ) derived for different system sizes, assuming DP
exponents. The collapse error is measured by the sum of root-mean-squared deviation of logarithmically scaled trajectories for all four scaling
functions. For the best estimate for exponents α = β/ν‖ and δ = β ′/ν‖, reported respectively in columns “Est. α” and “Est. δ,” a power law
was fitted to the head of values of probability of survival P̂(t ) and density ρ(t ), respectively, for the largest system size simulated for the time
period between 2 < t < 0.04 × Nν‖/dν⊥ , where both functions are expected to be still mostly behaving, similar to an infinite system, according
to power relations t−α and t−δ respectively. Directed percolation mean-field values for these critical exponents are δ = α = 1, which is close
to the value estimated for random, high-dimensional networks. Furthermore, the value of these critical exponents in a DP system are expected
to be close to α = δ = 0.15946 for 1+1 dimensional, α = δ = 0.450 for 2+1 dimensional, α = δ = 0.732 for 3+1 dimensional and equal to
the mean-field estimates systems α = δ = 1 for 4+1 dimensional [46], which is close to values estimated for one-dimensional lattice and two-
to four-dimensional square lattices.

Configuration Est. δtc β Error β ′ Error ν‖ Error ν⊥ Error Est. α Est. δ

Erdős–Rényi 〈k〉 = 8
Poisson 0.08421 0.01 0.01 0.06 0.03 1.0702 1.0338
Bursty
γ = 2.05 0.06231 0.06 0.17 0.08 0.09 1.0110 0.9816
γ = 2.2 0.08013 0.02 0.05 0.04 0.03 1.0320 1.0285
γ = 2.8 0.08649 0.01 0.01 0.05 0.01 1.0625 1.0368
γ = 5.2 0.08655 0.01 0.01 0.06 0.02 1.0540 1.0499

Hawkes self-exciting
μ = 0.2 α = 0.8 θ = 0.5 0.0815 0.01 0.04 0.07 0.03 0.9929 1.0015
μ = 0.2 α = 0.8 θ = 1.0 0.07932 0.02 0.06 0.06 0.04 1.0185 0.9747
μ = 0.5 α = 0.5 θ = 0.5 0.08339 0.01 0.03 0.05 0.02 1.0791 1.0328
μ = 0.5 α = 0.5 θ = 1.0 0.08281 0.01 0.04 0.07 0.03 1.0311 1.0116
μ = 0.8 α = 0.2 θ = 0.5 0.08397 0.01 0.01 0.07 0.02 1.0542 1.0246
μ = 0.8 α = 0.2 θ = 1.0 0.08383 0.01 0.02 0.07 0.02 1.0251 1.0087

Random 9-regular
Poisson 0.08808 0.03 0.05 0.05 0.02 1.0096 0.9947
Bursty
γ = 2.05 0.06484 0.08 0.17 0.11 0.08 0.9752 0.9660
γ = 2.2 0.08413 0.04 0.05 0.05 0.03 1.0044 0.9825
γ = 2.8 0.09046 0.02 0.03 0.05 0.02 1.0190 0.9874
γ = 5.2 0.09049 0.02 0.02 0.07 0.01 0.9886 0.9755

Hawkes self-exciting
μ = 0.2 α = 0.8 θ = 0.5 0.0853 0.05 0.06 0.06 0.03 0.9982 0.9686
μ = 0.2 α = 0.8 θ = 1.0 0.08303 0.02 0.06 0.08 0.04 0.9680 0.9564
μ = 0.5 α = 0.5 θ = 0.5 0.08728 0.02 0.03 0.06 0.02 1.0094 0.9702
μ = 0.5 α = 0.5 θ = 1.0 0.08663 0.02 0.05 0.09 0.03 0.9861 0.9664
μ = 0.8 α = 0.2 θ = 0.5 0.0879 0.05 0.01 0.12 0.01 0.9901 0.9563
μ = 0.8 α = 0.2 θ = 1.0 0.08769 0.04 0.05 0.06 0.03 0.9936 0.9796

1D lattice
Poisson 0.9919 0.01 0.03 0.01 0.03 0.1583 0.1456

2D square lattice
Poisson 0.28428 0.01 0.08 0.03 0.01 0.4109 0.3922

3D square lattice
Poisson 0.15375 0.01 0.06 0.02 0.01 0.7229 0.6899

4D square lattice
Poisson 0.1045 0.02 0.03 0.03 0.02 1.0077 0.9870

estimates of these exponents, which as expected are very
close to respective directed percolation critical exponents of
1 (for the mean-field regime d � 4) for the case of random
networks and 0.159, 0.450 and 0.732 for one-, two-, and
three-dimensional lattices respectively [46].

IV. DISCUSSIONS

Through combining multiple methods of empirical and
theoretical verification, we are able to confidently state that
limited waiting-time connectivity percolation over a wide

range of synthetic temporal networks incorporating a range
of temporal and topological inhomogeneities show behavior
compatible with the directed percolation universality class.
It is of utmost importance to discuss the limitations of our
method: chief among them, that our empirical finite-size
simulation method, as described in Sec. II B, is not able to
measure quantities which are defined at t → ∞, such as
the ultimate probability of survival Psurv and static density
ρstat (and therefore susceptibility χ ) to the same standard
of accuracy as the other quantities due to the finite size of
the synthetic networks used for analysis. This is exacerbated
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FIG. 6. An example of fitting power-law functions on empirical
ρ(t ) and P̂(t ) results on finite networks for deriving critical expo-
nents α = β/ν‖ and δ = β ′/ν‖. Power-law functions were fitted on
experimental results of spreading over Erdős–Rényi networks with
〈k〉 = 8 and N = 217 nodes and bursty (power law with minimum
cutoff) interevent time distribution with mean 1 and exponent γ =
2.8. The fitting was performed on values in range 1 < t < 0.04 ×
Nν‖/dν⊥ (i.e., 1 < t < 14.48) to limit the interference of finite-size
effects with the scaling behavior.

close to the critical threshold where the equilibration time,
the time required for the network to reach a stationary state,
grows rapidly while the memory and computational cost of
simulating a temporally larger temporal network grow linearly
and log-linearly, respectively, with the increased simulated
time [46]. This is visible in Figs. 5(e), 5(f) 5(k), and 5(l) as
a worse collapse as compared to other quantities.

Also, while it is computationally much more feasible to
measure susceptibility χ by inducing occupation of exactly
one existing event in the temporal network (described in
Sec. II B) as compared to inducing occupation of nodes at
random times (as described in Sec. I B), the latter method
might be more robust, especially when dealing with a tem-
poral network with a high degree of temporal inhomogeneity.
Although our experiments with this alternative method were
limited to smaller system sizes, we could not observe any sig-
nificant difference between the two methods for the network
configurations presented in this manuscript.

While a wide range of temporal dynamics and network
structures with different levels of inhomogeneity are studied
here, there is still a wide variety of systems that present
computational and theoretical challenges. First, the effects of
event-event correlations between links are not studied. It has
been shown that event-event correlations, among other forms
of inhomogeneity, can affect the rapidity of the spreading
process on temporal networks [13]. Conceptually, local event-
event correlations such as temporal motifs [29], are close to
temporal event graphs, which are in practice computed using

isomorphisms on slightly modified temporal event graphs.
Thus, incorporating temporal motifs to the framework at the
level of analytical computations is an interesting future di-
rection, as that corresponds to modifying the frequency of
appearance of structural motifs in the event graphs. Second,
the effect of static base networks with heavy-tail degree dis-
tributions and other more complicated network topologies
are absent from this study. Here, of especial interest are the
networks with heavy-tailed degree distribution with static
network reachability percolation threshold at zero occupied
links, e.g., p(k) ∝ k−2. While initial results did not support
the conclusion that a δt limited waiting time over this class of
synthetic temporal networks would be in the directed perco-
lation universality class, due to limitations on computational
resources, we were not able to perform the analysis on the
larger system sizes comparable to the other types of networks.

Depending on the physical mechanism involved in the
modeled connectivity phenomenon or spreading process, al-
ternative methods of defining the adjacency relationship might
be more suitable than the one used here. For example, for the
case of disease spreading over a physical contact network,
the currently used definition of event graph causes a “rein-
fection” of the infected party, manifested as a restart of their
δt duration of disease. This can be resolved by substituting
each undirected event in the temporal network with two si-
multaneous directed events. Similarly, for a disease spreading
scenario over transportation networks, such as an airplane
traffic network, the time between two events (the value that is
compared to the maximum duration of disease δt to determine
whether two flights are adjacent) should be calculated from
the departure of one flight to departure of the possibly adjacent
flight and not, as it is currently presented, from the arrival of
the latter to the departure of the former. This might be an
important factor when dealing with scenarios in which the
reasonable values for δt are comparable to the delay or the
duration of the events, e.g., the time from the departure of a
flight to the arrival in a spreading process over an air transport
network.

For some spreading mechanisms, it might also be more
suitable to replace the hard δt limited-time cutoff of adjacency
requirement used in this work with a probabilistic process by
measuring quantities over an ensemble of event graphs. For
example, using a Poisson process instead of a δt limited-time
cutoff would produce dynamics similar to simulations of SIS
processes over networks while simulating results of the sim-
ulation starting at every possible starting point in one pass.
Viewed this way, normal δt limited-time cutoff can be seen as
a probabilistic process where the probability of adjacency is
a step function at �t = δt . It is also possible to combine an
occupation probability similar to classic directed percolation
(see Sec. I B) with a δt limited-time cutoff (or a Poisson pro-
cess cutoff or other forms of temporal locality constraint) to
construct a two-dimensional phase diagram for each temporal
network.

It would also be possible to define connectivity in the event
graphs in a way that mimics the SIR process. In this case, one
would need to prune some of the temporal paths in the event
graph such that temporal network nodes are not repeated. This
distinction is equivalent to paths and simple paths (or walks
and paths, respectively) in static graphs. The algorithmic
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techniques employed in this work are not directly applicable
to this case, and in fact, it has been recently shown that
algorithmic problems in such settings can be computationally
difficult. For example, in the SIR interpretation of the event
graph, finding if it is possible for a node infected at a specific
time to infect a given node is an NP-hard problem [92]. In
any case, averaging over explicit simulations of spreading
scenarios is always an alternative option to the algorithms that
take advantage of the redundancies in computing reachability.

Connectivity, which encapsulates several important phe-
nomena on complex systems such as spreading pro-
cesses [37–39] and routing dynamics [44], has not yet
undergone the same level of development on temporal net-
works as the static networks. It has been previously suggested
that connectivity on temporal networks, or other adjacent rep-
resentations such as dynamic networks, might show the same
properties as any other directed percolation system [20,21],
a class of percolation models with built-in directionality
which has enjoyed abundant attention in the past decades.
In Ref. [22], we laid formal foundations by providing one-
to-one analogues between concepts from directed percolation
and temporal network connectivity and provided theoretical
evidence supporting this hypothesis. In this work, we pre-
sented multiple accounts of empirical evidence showing that
connectivity on many model temporal networks belongs to the
directed percolation universality class and that this hypothesis
is robust for a range of temporal and spatial heterogeneities.

This work focused mainly on establishing the vocabulary
and developing the required tools in the hopes of rendering
studies of connectivity in temporal networks ripe for future
analysis, especially from a critical phenomena perspective.
It is important to note that this work has only scratched the
surface of the analytical study of connectivity on temporal
networks and still, a vast body of analytical and phenomeno-
logical topics, some of which were eluded to in the previous
paragraphs, remains open for future study.
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APPENDIX: MEAN-FIELD SOLUTION FOR DIRECTED
PERCOLATION IN TEMPORAL NETWORKS

The event graph representation contains many redundant
adjacency relationships, e.g., triangles, or more generally
feed-forward loops, that can be removed without changing
reachability of nodes, producing a reduced event graph [22].
Assuming the probability of two or more adjacent events
happening at exactly the same time is negligible, the reduced
event graph, a subset of the event graph with exactly the same
reachability properties, has a maximum in- and out-degree of
2 [22,25]. If we make the simplifying assumption that the
reduced event graph representation of δt limited waiting-time

spreading process on a specific temporal network is indistin-
guishable from a random directed network with the same joint
in- and out-degree distribution P(kin, kout ), then a mean-field
solution to order parameter occupation density ρstat for a δt
limited-time spreading process over temporal networks, as
defined in Sec. II A, can be derived in the form

∂

∂t
ρ(t ) = (〈Qout〉 − 1)ρ(t ) − 〈Qout〉ρ(t )2, (A1)

where 〈Qout〉 is the mean excess out-degree of the reduced
event graph [22]. This rate equation has the same form as
Eq. (1). The solution to this equation shows a phase transition
at τc = 0 and other behavior consistent with τ = 〈Qout〉 − 1
being the control parameter of directed percolation. As with
Eq. (1) this sets two of the four critical exponents in the
mean-field regime to the same values as those of mean-field
DP, α = β = 1.

Under the same assumption, the probability-generating
function representation of the out-degree distribution is
Gout

0 (y) = G(1, y) where G(x, y) is the joint in- and out-degree
distribution probability-generating function. Similarly, the ex-
cess out-degree distribution probability-generating function
can be defined as

Gout
1 (y) = 1

〈kEG〉
∂

∂x
G(x, y)|x=1, (A2)

where 〈kEG〉 = ∂
∂x G(x, y)|x=y=1 = ∂

∂y G(x, y)|x=y=1 is the
mean in- or out-degree on the event graph. This can
be used to derive the out excess-degree distribution as
Qout

i = ∂ i

i!∂yi Gout
1 (y)|y=0.

Making the same assumption as above, namely that the
event graph representation is indistinguishable from a random
directed network with the same joint in- and out-degree distri-
bution P(kin, kout ), we can derive the mean cluster mass, which
as discussed in Sec. II A can be calculated as the number of
reachable events or mean out-component size on the event
graph, as

M = 1 + 〈kEG〉(−τ )−1 = 〈kEG〉 − τ

−τ
, (A3)

which has a power-law asymptote at τc = 0 of the form M ∼
−τ−1 which confirms the mean-field DP exponent γ = 1 [22].

Deriving a closed-form solution for τ becomes pro-
hibitively complex for many types of synthetic temporal
networks that involve even the slightest traces of spatial or
temporal inhomogeneities and require many simplifying ap-
proximations of the structure of networks. As the nature of the
assumption are similar to the ones we used while showing the
critical exponents in the mean-field regime, this alone would
not be productive as a mean to validate or refute the previous
theoretical claims for networks with heterogeneous structure
or dynamics. Therefore, we complemented these analytical
derivations of τ (from Sec. A 1) and the critical exponents
(from the mean-field approach of Ref. [22] and the current
section) with measurements derived from simulations. While
it would be possible to measure τ from the simulated event
graphs, we elected to use δt − δtc as a stand-in for control
parameter τ , similar to how p − pc was used in Sec. I B for
lattices. Very close to the critical threshold τ → τc, δt − δtc
linearly approximates the control parameter τ , which would
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preserve the power-law relationships mentioned before at least
for some neighborhood of τ = τc = 0. δt is simply a pa-
rameter of the simulation and δtc can be derived empirically
for each configuration, either by trial and error or through
the finite-size scaling method described in Sec. I B 2. This
means that, by virtue of not relying on the methods and
assumptions presented previously, we can provide a clean sep-
aration between the empirical validation and our theoretical
assumptions.

It is possible to find a closed-form solution for τ for very
simple systems, such as the case of random k-regular networks
with Poisson process link activations. This, however, entails
making simplifying assumptions about the structure of the
event graph. The results of this derivation and the comparison
with empirical measurements follows in Sec. A 1.

1. Solution for random k-regular static base networks
with Poisson link activation

For the case of random k-regular static base networks and
Poisson process activation of links with mean interevent time
λ, we were able to analytically derive a closed-form solution
of the control parameter τ as a function of δt , k, and λ. To
this end, it is necessary to derive the joint degree distribution
probability-generating function G(x, y) of the event graph
based on the excess degree distribution of the base random
k-regular network and the Poisson process [22]. This leads to
a formulation of out-degree and excess out-degree distribution
probability-generating functions of the form

Gout
0 (y) = Gout

1 (y) = −2(k − 1)(y − 1)yeδt (−k)λ

k

+ (y − 1)(2k(y − 1) − 2y + 1)eδt (1−2k)λ

2k − 1

+ y(2(k − 1)2y + 3k − 2)

k(2k − 1)
. (A4)

This in turn, based on relation τ = 〈Qout〉 − 1 = G′out
1 (1) − 1,

produces

τ = (4k2 − 6k + 2)eδt (−k)λ + keδt (1−2k)λ − 2(k − 1)2

(1 − 2k)k
.

(A5)
Figure 7(a) shows the relationship between the theoreti-

cally derived value of the control parameter τ from Eq. (A5)
for different random k-regular networks with a Poisson pro-
cess with mean interevent time fixed to 1. As expected, a
denser network has a lower onset of criticality in terms of the
maximum waiting time δt . Furthermore, a linear approxima-
tion of τ ∝ δt − δtc works quite well for these systems for the
neighborhood close to τ = 0 given the lower curvature for at
least the immediate surrounding of τc.

Given that, for the event graph representation of an in-
finite random k-regular networks with a Poisson process
activation configuration the out-degree and the excess out-
degree distributions are equal, as derived in Eq. (A4) [i.e.,
Gout

0 (x) = Gout
1 (x)], Eq. (A3) simplifies to M = −τ−1 for τ <

0. Figure 7(b) compares this analytical solution of mean

FIG. 7. (a) Theoretically derived value of control parameter τ as
a function of δt as given in Eq. (A5) for random k-regular networks
with Poisson processes link activation with λ = 1. The intersection
with the horizontal line at τ = 0 indicates the predicted critical
value δtc. (b) The analytical solutions for mean out-component size
M = (−τ )−1 as a function of δt compared to empirical measurement
of M(δt ) over 256 realizations of large (N = 217) finite network for
random 9-regular networks in the absorbing phase δt < δtc. Also
visualised is the effect of using δt − δtc as an approximation of
control parameter τ , which shows similar behavior close to δtc.

out-component size (calculated with the assumption of the
randomness of the event graph) with empirical measurements
of a large network. Note that, for k = 9, our best empirical
estimate for δtc, δt empirical

c = 0.08808, compared to the esti-
mate from the analytical method, δt theoretical

c = 0.08559, have a
difference of around 3%. This is also visible when comparing
empirical measurements of mean cluster mass M(δt ) and the
theoretical estimations for the system in Fig. 7(b). This can
be attributable to the fact that the rate equation Eq. (A1) is
constructed for temporal networks under the assumption that
the event graph is indistinguishable from a random directed
network with the same joint in- and out-degree distribution.
This difference seems to suggest that certain local structures
in the event graph are very slightly over-represented compared
to a random directed graph with the same degree distribution.
Also indicated by Fig. 7(b) is the fact that the power-law
behavior of the empirical trajectory with a critical exponent
of γ = −1 can quite easily be validated by using an empirical
estimation of δtc.
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