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Contact tracing via digital tracking applications installed on mobile phones is an important tool for
controlling epidemic spreading. Its effectivity can be quantified by modifying the standard method-
ology for analyzing percolation and connectivity of contact networks. We apply this framework for
networks with varying degree distribution, the number of application users and the probability of
quarantine failure. Further, we include structured populations with homophily and heterophily and
the possibility of degree-targeted application distribution. Our results are based on a combination
of explicit simulations and mean-field analysis. They indicate that there can be major differences
in the epidemic size and epidemic probabilities which are equivalent in the normal SIR processes.
Further, degree heterogeneity is seen to be especially important for the epidemic threshold but not
as much for the epidemic size. The probability that tracing leads to quarantines is not as important
as the application adaption rate. Finally, both strong homophily and especially heterophily with
regards to application adoption can be detrimental. Overall, epidemics are very sensitive to all of
the parameter values we tested out, which makes the problem of estimating the effect of digital
contact tracing an inherently multidimensional problem.

In a pandemic era, until effective vaccines are widely
deployed, carefully timed non-pharmaceutical interven-
tions [1] such as school closures, travel restrictions and
contact tracing [2–6] are the best tools we have for curb-
ing the pandemic. Contact tracing is an attempt to dis-
cover and isolate asymptomatic or pre-symptomatic (ex-
posed) individuals. In the absence of herd immunity,
contact tracing is a potent low-cost intervention method
since it puts people into quarantine where and when the
disease spread. Therefore, it can have a major role in
1) containing a pandemic by relaxing social-distancing
interventions [7], 2) providing an acceptable trade-off be-
tween public health and economic objectives [8, 9], 3)
developing sustainable exit strategies [10, 11], 4) identi-
fying future outbreaks [12] and 5) reaching the ‘source’
of infection [13].

Thanks to the emergence of low-cost wearable health
devices [14–20] and mobile software applications, digital
contact tracing can now be deployed with higher preci-
sion without the problems of manual contact tracing such
as the tracing being slow and labor-intensive or having
human issues related to blame, fear, confusion and poli-
tics. On the other hand, wearable devices also offer con-
tinuous access to real-time physiological data which can
be used to tune other non-pharmaceutical or pharmaceu-
tical strategies. Contact tracing is albeit limited by the
low adoption of contact tracing apps in the population.

In both forms — manual [3, 4, 21–29] and digital
[30–32] — contact tracing has been commonly consid-
ered as an effective strategy and different empirical data
sets have validated this claim in short-time population-
based controlled experiments [30, 33–37]. Its real po-
tential in heterogeneous [38–41] populations, however,
is not yet clear, especially because of the homophily in
app adoption and other health behavior [42, 43]. It has

been reported that app adoption is correlated with peo-
ple’s job, age, income and nationality [44, 45]. Degree-
heterogeneity in the contact network [46] can alter epi-
demiological properties in the form of variance in final
outbreak size [47], vanishing epidemic threshold [41, 48],
hierarchical spreading [49], strong finite-size effects [50]
and universality classes for critical exponents [51].

To reduce the peak and total size of the epidemic, not
only the number of app adoption but also its distribution
is of great significance if contact tracing is done early
enough in the course of the spread. Therefore, in some
parameter settings, contact tracing may not be effective
enough [7, 52]. To curb the epidemic, app adoption of
super-spreaders [53, 54] are needed to be taken into ac-
count since it dictates the extent to which a virus spreads
in a bursty, power-law fashion [55–57] especially when
there is high individual-level variation in the number of
secondary transmissions [49, 58, 59].

Since the World Health Organization has declared the
COVID-19 outbreak as a Public Health Emergency of In-
ternational Concern, network scientists have developed
different approaches towards analyzing epidemic tracing
and mitigation with apps. Using the toolbox of network
science, different groups have investigated the effective-
ness of contact tracing based on the topology and direc-
tionality of contact networks [13, 33, 60–66]. Recently,
a mathematical framework aimed at understanding how
homophily in health behavior shapes the dynamics of epi-
demics has been introduced by Burgio et al. [67].

In this study, we investigate the effect of varying app
coverage in homogeneous and heterogeneous contact net-
works with and without homophily in app adoption.
Further, we explore the effect of distributing the apps
randomly and preferentially to high-degree nodes [60]
in these scenarios. Our main focus is on the epidemic
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threshold and the final size of the epidemics, therefore,
we assume the dynamics of the epidemic to be governed
by the simple SIR model [46]. This model can be eas-
ily mapped to a static bond-percolation problem [68, 69]
so that the epidemiological properties can be measured
based on the topological structure of the underlying net-
work [46, 70–73]. The difference in the spreading frame-
work with the app to the normal one is that the infec-
tion cannot spread further if it passes a link between two
app-users (app-adopters). That is, the infection process
model needs to include the memory of the type of node it
is coming from. We then extend the percolation frame-
work such that we can add memory [74, 75] to it in order
to keep track of the infection path. This leads to the
observation that the epidemic size is not the same as the
epidemic probability anymore.

Our results are based on explicit simulations and mean-
field-type calculations of the percolation problem. Our
findings show that 1) number of app-users has a di-
rect effect on the epidemic size and epidemic probabil-
ity and the difference between these two observables is
larger in high-degree targeting strategy, 2) epidemics can
be controlled to much better in the high-degree target-
ing strategy, 3) even though degree-heterogeneity can
strongly affect or even vanish the epidemic threshold,
high-degree targeting strategy can compensate this ef-
fect and increase the threshold significantly, 4) increas-
ing heterophily from random mixing always increases the
outbreak size and lowers the epidemic threshold, 5) in-
creasing homophily does the opposite until an optimum,
that is below the maximum homophily case, is reached
and 6) the probability of contact tracing succeeding in
preventing further infections is not as important as the
fraction of app-users, but can still have significant effects
on the epidemic size and epidemic threshold.

I. MODELLING APPROACH

A. Disease model and connection to percolation

We employ a standard SIR disease model on networks
with additional dynamics given by the disease interac-
tions with the disease tracking application. In the model,
an infected (I) node will infect susceptible (S) nodes it is
connected to by rate β and go to the removed state (R)
after time τ .

In addition, if an app-user infects another app-user,
that second node will get infected but will quarantine
themselves with probability papp. The quarantined user
will have no further connections that would spread the
infection they received from the other app-user. A note-
worthy deviation from a realistic spreading case here is
that we do not model quarantines that would be caused
by another app-user but prevent the disease spreading
from through a third node.

That is, we only model the primary infection path
from the other app-user causing the alarm, but do not

stop possible concurrent secondary infection paths from
a third node.

The SIR processes can be studied using component size
distributions of networks where parts of the links are ran-
domly removed. Thus, the epidemic threshold, epidemic
probability and epidemic size can be mapped to a per-
colation problem [68]. The SIR spreading process in the
presence of apps can be mapped to a slightly more com-
plicated percolation problem [33, 60]. In this mapping,
every infected individual, regardless of app adoption, can
infect a susceptible neighbor with transmission probabil-
ity p = 1− e−βτ [68].

Moreover, to model the quarantines by app-users one
needs to delete the links between two app-users with
probability papp. This ensures that we ignore the infec-
tion paths that would go through two app-users when one
of them is successfully quarantined. However, removing
these links also removes the second app-user from the
component, even though they are infected. To correct
for this we need to first find the components of the net-
work, and then extend them, by including all app-users
outside of the component that are connected to another
app-user (and considering the probability p that the link
is kept). See Fig. 1 for an illustration of this process,
which leads us to two definitions of components: normal
and extended.

(A) (B)

(D)(C)

FIG. 1. (a) Original contact network with app-users marked
with the oval symbol. (b) The normal largest component,
after the dotted links have been removed in the percolation
process by random. When apps are working perfectly, links
between a pair of app-users are removed with probability
papp = 1 and other links are removed with probability p. (c)
An example for a path of infection: the second app-user can
be infected therefore it must be included in the outbreak size
(d) Extending the giant component to include the secondary
app infections. The second infected app-adapter is added to
the giant component with transmission probability p.

B. Components, epidemic size and epidemic
probability

In the SIR model without apps, the component size
distribution can be used to fully describe the late stages
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of the epidemics. Given an initially infected node, the
size of the component it belongs to determines the size of
the epidemic. The relationship between percolation and
the final disease size is particularly simple if the popu-
lation is large enough that it can be approximated with
an infinite contact network. In this case, the percolation
threshold gives the epidemic threshold and below it the
epidemic always spans only a zero fraction of the popula-
tion, because all the components are of finite size. Above
the percolation threshold there is a single giant compo-
nent which spans smax = Smax/N fraction of the nodes.
This is equivalent to both the size of the epidemic, given
that there is one, and the probability that there is an epi-
demic starting from a single initially infected node [68].
The expected size of the epidemics is in this case given
as S2

max.
When we introduce apps to the spreading process the

equivalence of the epidemic size and epidemic probability
breaks down. Both the normal component and the ex-
tended component become important. The probability
that there is an epidemic is still given by the component
size as in the normal SIR process. However, the epidemic
size, given that there is one, is now given by the extended
component size S′max. The expected epidemic size is then
given by SmaxS

′
max.

Similar relationships hold for finite-size systems. For
example, the expected size of the epidemics from single
source becomes

〈E〉 =
∑
c

Sc
N
S′c , (1)

where Sc is the normal size and S′c is the extended size of
the component c and N is the total number of nodes. In
this formula, Sc/N gives the probability that the initially
infected node is in the component c and S′c gives the size
of the epidemic if a node in component c is chosen.

C. Network models

We aim to study how the network topology and loca-
tion of the app-users in the network affect the epidemics.
We study networks with degree distribution P (k) and
average degree 〈k〉 such that each node is an app-user
with probability πa and not an app-user with probability
1−πa. We use Poisson (ER) random graphs [76] to model
homogeneous contact patterns and scale-free networks
P (k) ∝ k−β generated with the configuration model [46]
to model heterogeneous contact patterns. The πaN app-
users can be picked 1) uniformly at random from the
underlying network or 2) by distributing the apps in the
order of their degree such that the high-degree nodes get
the apps first.

To insert homophily (heterophily) in app adoption, we
assume that app-users are more likely (are less likely) to
be connected together. This can be controlled by the
probability πaa that an app-user is connected to another
app-user; this stochastic block model network is a type

of Ei,i
′

network introduced in Ref [77] with two groups
of nodes: app-users and individuals without the app.
The existence of homophily or heterophily of the network
structure is determined by comparing πaa to its value for
the neutral case with no homophily or heterophily.

In the absence of homophily or heterophily, πaa = ηa,
where ηa is the ratio of links that emerge from app-users
to the total number of stubs (nodes connections); This is
because if the nodes were connected purely at random,
the probability that a link from an app-user connects it to
another app-user equals the ratio of the number of stubs
that app-users have to the total number of stubs, i.e., ηa.
In the case of a random selection of app-users ηa = πa,
since both app-users and non-app-users have on average
the same number of stubs and the fraction of stubs that
app-users have equals the fraction of app-users in the
system, i.e., πa. Nonetheless, in a high-degree targeting
strategy, the number of stubs that app-users have on av-
erage is larger than that of non-app-users. In that case,
ηa can be calculated from the degree distribution (see
Sec. II B). When πaa > ηa, app-users are more likely to
be connected to each other than a purely random network
in which they are connected with probability ηa. Hence
in that case there is homophily in the connection between
the app-users, which means there is also homophily in the
connections between non-app-users. On the other hand,
when πaa < ηa nodes are more likely to be connected to
the nodes of the other type (heterophilic network).

II. ANALYTIC AND SIMULATION METHODS

The epidemics is here studied with various levels of ap-
proximation. We employ analytical computations based
on mean-field-type approximations to efficiently analyse
the wide parameter space of our models and to pro-
vide explicit formulas for our main observable quanti-
ties. Here an approximation based on branching pro-
cesses can be used to determine the critical point. Follow-
ing Ref. [33], more detailed calculation based on perco-
lation arguments will give us the component sizes which
can be related to the final epidemic size and epidemic
probability. These mean-field approximations are then
complemented by simulations of the network connectiv-
ity.

A. Mean-field approximation for the branching
process

An straightforward way of finding the epidemic thresh-
old in the SIR model is to find the critical point of a
branching process, where the branching factor is given
by the expected excess degree q. In the epidemic setting
the branching factor R = pq which gives the expected
number of people one infected person infects during the
epidemic process. Note that this is different from the
basic reproduction number that has been defined in the



4

networks as R0 = β/γ〈k〉 [69]. In the SIR model with
the app, we need to duplicate the populations so that we
track separately the ones without the app (S0, I0 and
R0) and with the app (SA, IA and RA).

Given that the apps are uniformly distributed to πa
fraction of the nodes, we can write a mean-field approx-
imation based on the branching process as follows:

It+1
0 = (1− πa)R(It0 + ItA) (2)

It+1
A = πaRI

t
0 , (3)

where R is the branching factor. These equations can be
rewritten as second order difference equation

It+1
0 = (1− πa)RIt0 + (1− πa)πaR

2It−10 . (4)

This equation can be solved with characteristic equation,
such that results is

It0 = aRt+ + bRt− , (5)

where a and b are constants depending on the initial con-
ditions and R+ and R− are the two roots:

R± = R
1− πa ±

√
(1− πa)(3πa + 1)

2
. (6)

For large t the larger term R+ dominates and determines
if the I0 value will grow exponentially or decline expo-
nentially. More precisely, there is a chance of epidemic
if R+ > 1. From here we can solve critical value of app-
users πca that are needed for reducing the reproductive
number R+ below 1 given the initial reproductive num-
ber R > 1:

πca =
R− 1 +

√
(R− 1)(R+ 3)

2R
. (7)

B. Giant component size from consistency
equations

An alternative to the branching process approach is
to form consistency equations for the giant component
size. In Ref. [33] the governing equations for the size
of the epidemic and the transition point were obtained
for the case of random networks in the absence of ho-
mophily. Here we derive the analytical results for the
more general case of the spectrum of heterophilic to ho-
mophilic networks, a special case of which are the non-
homophilic networks of Ref. [33]. We consider that app-
users might be connected together with a pattern dif-
ferent from pure random chance, this can also be the
case for the non-users. In the case of a homophilic net-
work where the app-users are more likely to be connected
together, the non-users are also more likely to be con-
nected to individuals of the same kind. This is equiv-
alent to saying that groups of people who adopted the
app are likely to be groups of nodes in the network with
group members in rather close distance from each other.

To represent the bias in connection probabilities we con-
sider that two app-users are connected with probability
πaa and other types pairs of nodes are connected with
probabilities πan = 1 − πaa, πna = πa

1−πa
(1 − πaa) and

πnn = 1 − πna = 1−πa−πa(1−πaa)
1−πa

, where πa and is the
probability that a person is an app-user and the second
equality comes from the balance between the number of
links from app-users to non-app-users and from non-app
to app-users, that is, πaNπan〈k〉 = (1− πa)Nπna〈k〉.

Our aim is to write the self-consistency equations for
the probability, u0, that following a link to a non-app-
user does not lead to the giant component and probability
ua, that following a link to an app-user does not lead to
the giant component.

Similar to Ref. [33], we can write the conditional prob-
abilities of u0 and ua given that they have degree k as

u0(k) =

k∑
k′=0

(
k

k′

)
πk

′

nau
k′

a (1− πna)k−k
′
uk−k

′

0 , (8)

ua(k) =

k∑
k′=0

(
k

k′

)
πk

′

aa(1− πaa)k−k
′
uk−k

′

0 . (9)

The self-consistency equations can then be written as:

u0 = g1 ( (1− πna)u0 + πnaua ) , (10)

ua = g1 ( papp((1− πaa)u0 + πaa)

+ (1− papp)((1− πaa)u0 + πaaua) ) , (11)

and

s = 1− (1−πa)g0 ((1− πna)u0 + πnaua)

−πag0( papp((1− πaa)u0 + πaa)

+(1− papp)((1− πaa)u0 + πaaua))) , (12)

where g0 and g1 are, respectively, the generating func-
tions for degree and extended degree distributions [46],
papp is the probability the app work as expected (1−papp
is then the probability that the app-user does not quar-
antine her/himself after being notified of exposure to an
infectious app-user) and s is the fraction of nodes infected
through non-app-users. Note that πna is determined by
the free parameters πa and πaa as we already showed that
πna = πa

1−πa
(1 − πaa). When πaa = πa we can write the

relative extended component size s′ which also includes
individuals caught infection though an app-user before
s/he could quarantine her/himself (see Sec. II C 1) as

s′ = s+ (1− s)(1− e−sπ
2
aqppapp) , (13)

where q is the expected excess degree.
In the case of including a transmission probability p

which is less than 1 (in the above equations it was as-
sumed the links are transmitting with probability 1),
Eqs. 10 and 11 will change to:

u0 = 1− p+ pg1((1− πna)u0 + πnaua) , (14)

ua = 1− p+ pg1((1− papp)((1− πaa)u0 + πaaua)

+papp((1− πaa)u0 + πaa)) . (15)
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When the fraction πa of nodes selected to adopt the
app are all the highest degree nodes in the network, a
fraction ηa of the links are protruding from the app-users
(which are the top πa fraction of nodes). These nodes all
have a degree higher than ka − 1 such that they include
some of ka nodes and the rest are comprised of all nodes
with degree larger than ka. Then we can write ηa as:

ηa = r∗kapka/〈k〉
∞∑
ka+1

kpk/〈k〉 (16)

=

∞∑
ka,right

kpk/〈k〉 , (17)

where r∗ is the fraction of degree ka nodes that are
app-users and in Eq. 17 we absorbed r∗ into pk so that
pka,right = r∗kapka represents the fraction of nodes in the
network that have degree ka and are app-users (so in
Eq. 17, ka,right takes the value ka).

Then for a network with homo/heterophily:

u0 = 1− p+ p
1

1− ηa

ka,left∑
k=0

qk [(1− πna)u0 + πnaua]
k
, (18)

ua = 1− p+ p
1

ηa

∞∑
ka,right

qk[(1− papp)((1− πaa)u0 + πaaua)

+ papp((1− πaa)u0 + πaa)]k , (19)

and

s = 1−
ka,left∑
k=0

pk [(1− πna)u0 + πnaua]
k

−
∞∑

ka,right

pk[(1− papp)((1− πaa)u0 + πaaua)

+ papp((1− πaa)u0 + πaa)]k . (20)

a special case of which are networks with neutral (non-
existing) homophily, where πaa is obtained to be equal to
ηa and accordingly πna = ηa, therefore,

u0 = 1− p+ p
1

1− ηa

ka,left∑
k=0

qk [(1− ηa)u0 + ηaua]
k
, (21)

ua = 1− p+ p
1

ηa

∞∑
ka,right

qk[(1− papp)((1− ηa)u0 + ηaua)

+ papp((1− ηa)u0 + ηa)]k ,(22)

and

s = 1−
ka,left∑
k=0

pk [(1− ηa)u0 + ηaua]
k

−
∞∑

ka,right

pk[(1− papp)((1− ηa)u0 + ηaua)

+ papp((1− ηa)u0 + ηa)]k . (23)

These results predict the behavior of the epidemic dy-
namics in the thermodynamic limit, therefore they de-
scribe the dynamics very well when the network size is
large enough.

C. Component size simulations

Next, we describe the way to extract the giant compo-
nent in simulated networks and how these simulation re-
sults can be used for finding the critical points of the dis-
ease spreading process. The component sizes can also be
used to find the epidemic size distributions as described
in Section I B.

1. Component Extension

In each simulation run, we simulate one network struc-
ture G and distribute the apps to the nodes according
to one of the models described in Section I C. From the
original network G, we keep each link with probability
p = 1− e−βτ , which is the probability of infection going
through a link without apps. We also remove all the links
between two app-users with probability papp and call the
resulting network Ga. The components of graph Ga are
the normal components.

The extended components can be reached by going
through every normal component and extending it. For
every app-user in the component α ∈ C, we go through
the neighbors nα = {α1, α2, , ..., αk} in the original net-
work G. If αi is an app-user and not in the component
αi /∈ C, we add it to the component extension C ′ with
probability p. The total set of infected nodes, if starting
from a node in C, is going to be C ∪ C ′. As these are
disjoint sets, we can compute the size as S′C = |C|+ |C ′|
and Sc = |C|.

2. Susceptibility

In numerical simulations of finite size systems we can
use the peak of a susceptibility measure to find the crit-
ical transition point. Theoretically, susceptibility [46] is
a measure of fluctuation in the component sizes which is
singular at the epidemic threshold (the critical point). In
network percolation studies, it is defined as the expected
growth in the size of the giant component when a random
link is added to the network. Therefore, susceptibility in
an ordinary percolation problem can be written as:

χ =

∑
c6=cmax

S2
c − S2

cmax

N − Scmax

, (24)

where Sc is the size of the component c, cmax =
argmaxcSc is the largest component.

This formulation of susceptibility is not suitable in the
current case. In fact, using the maximum value of Eq. 24
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could lead to estimates of critical points that are very far
from the actual one. Instead, we want to compute the
expected growth in the extended giant component, which
can be computed as:

χ′ =

∑
c6=cmax

ScS
′
c(1−

S′
cmax

N )

N − Scmax

, (25)

where Sc and S′c are the size and the extended size of
the component c and cmax = argmaxcS

′
c is the largest

component measured in the extended size.

III. NUMERICAL RESULTS

We will next illustrate using the theory and simulation
introduced in Sec. II how the various parameters affect
the epidemic sizes and epidemic probabilities. The simu-
lation studies are done in networks of 104 nodes and aver-
aged over 10 realizations. We use two network topologies:
homogeneous networks (Erdős-Rényi networks) with ex-
pected degree 〈k〉 = 10 and networks created with the
configuration model with power-law degree distribution
p(k) = k−3, where the amount of degree 1 nodes is ad-
justed such that the average degree is 10. We then vary
the effective degree k̄ = p〈k〉 by randomly removing links
from these initial networks.

A. Differences in normal and extended components

The difference of the epidemic probability (normal
component size) and the epidemic size (extended compo-
nent size), is a phenomenon that is specific to epidemics
in the presence of app-adaptors. Breaking the equiva-
lence of these two measures can have practical conse-
quences as illustrated in Fig. 2a. The difference between
these two grows with the fraction of app-users πa. For
example, when πa = 0.8 and the epidemic probability
(the normal component size) is smax ≈ 0.5, the epidemic
size (the extended component size) reaches smax ≈ 0.8.
This is reflected also in the expected epidemic sizes (see
Fig. 2b). Despite the two component definitions differing
from each other, they still display the transition at the
same point and this point can be measured numerically
using the susceptibilities defined in Eqs. (24)-(25) (see
Fig. 2c).

The extended component size is not a conserved quan-
tity like the normal component size in the sense that
the sum of component sizes S∑ would always sum to the
number of nodes N . Instead, the sum of component sizes
can be significantly larger than the number of nodes (see
Fig. 2d) and the maximum value it can reach grows with
the number of application users πa. The deviation from
S∑/N = 1 reaches its maximum with disease parameters
higher than the threshold values, but when the disease
reaches a large enough population the fraction S∑/N
starts to decay reaching S∑/N = 1 when everybody be-
longs to the normal giant component.

FIG. 2. Disease spreading statistics in an Erdős-Rényi net-
work as a function of the effective degree k̄ when there are
πa applications that are distributed uniformly randomly. Re-
sults are normalised to the network size N and shown for
πa ∈ [0, 0.2, 0.4, 0.6, 0.8]. The lines indicate the results from
theory introduced in Sec. II B and the markers are results
computed from component sizes of simulated networks as de-
scribed in Sec. II C. (a) The normal component size, i.e., the
epidemic probability, (dotted lines and dots) and the extended
components, i.e. the epidemic size, (solid lines and stars) (b)
Expected size of the epidemic (lines and diamonds). (c) Sus-
ceptibility of the normal giant component χ (dots) and the
extended component χ′ (lines with stars). Picks are the same
positions for both types of curves. (d) The fraction of sum of
component sizes and network size S∑/N .

B. Quarantine failures

The assumption in Section III A is that i) apps work
perfectly and ii) an app-user always self-isolates before
having a chance to apps the infection, meaning that there
are no quarantine failures, papp = 1. It is of practical
significance to investigate the effects of quarantine fail-
ures on the epidemic threshold and epidemic size. Fig. 3
shows that in the absence of major quarantine failures,
epidemic tracing and mitigation with apps can still be a
valid strategy if app adoption level in a society is high
enough. The effect of app adoption rate πa is more im-
portant than the rate at which apps function, but both
need to be relatively high in order for the apps to have a
significant impact.

Even if we are above the epidemic threshold, the apps
can be useful. Especially when the application adoption
πa is high, the quarantines can be very unreliable and
the outbreak size (Fig. 3b-c) and epidemic probability
(Fig. 3d) both remain small. Again, overall both the app
adoption and quarantine reliability are important, with
the app adoption rate being more important.

C. Degree heterogeneity and high-degree app
targeting

Real networks are degree-heterogeneous and this het-
erogeneity has a strong effect on the final outbreak size
and the epidemic threshold. Fig. 4 shows the expected
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FIG. 3. The effect of quarantine failures in homogeneous net-
work in which app adoption is done randomly. (a) The epi-
demic threshold as a function of quarantine probability papp
and app adoption rate πa. All threshold values larger than 4
are shown with the same color. By setting the effective con-
nectivity of the network to k̄ = 1.8 (b) the expected epidemic
size, (c) the extended giant component size and (d) the nor-
mal giant component size are shown as a function of papp and
πa.

epidemic sizes with two different strategies in app adop-
tion, random and high-degree targeting for different frac-
tions of app-users πa in the network. In the homogeneous
network, Fig. 4a, contact tracing decreases the expected
epidemic size and pushes the epidemic threshold forward.
These effects can be further amplified by shifting to the
high-degree targeting in app adoption. With 80% of app-
users, the epidemic threshold can move from k̄ = 1 to
k̄ = 4 which means at that point expected epidemic size
is zero while without contact tracing it would be almost 1.
Note that in homogeneous networks, the effective average
degree of the contact network k̄, has a good correspon-
dence to the reproduction number of the infection.

In networks with degree-heterogeneity, the epidemic
threshold vanishes in normal SIR processes. This effect
holds in contact-traced epidemics if distribute the apps
uniformly randomly. However, from Fig. 4b it is clear
that contact tracing can significantly reduce the expected
epidemic size even when the apps are randomly dis-
tributed and the epidemic threshold remains unchanged.
With a high-degree targeting strategy, it is possible to
move the epidemic threshold. Comparing the expected
epidemic size at different values of k̄ < 3 shows that in
real-world situations, app adoption of super spreaders is
of significant importance. Since hubs become the app-
users, this strategy has drastic effects on the size and
threshold of the epidemic, such that the threshold get
pushed from somewhere near zero to some value k̄ > 5.
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FIG. 4. Effects of contact tracing on the expected epidemic
size and the epidemic threshold (insets) using two different
strategies, random app adoption (small dots) and high-degree
targeting (dotted lines) in (a) homogeneous networks with
Poisson degree distribution and (b) heterogeneous networks
with a power-law degree distribution P (k) ∝ k−3. Results are
shown for πa ∈ [0, 0.2, 0.4, 0.6, 0.8].

Therefore, the reproduction number can be much more
controlled in the high-degree targeting strategy.

D. The effect of homophily and heterophily

In previous sections, there was an assumption that
app-users are disturbed with random mixing patterns:
the fact that one of the connections of a node is an
app-user has no effect on the probability of that node
to be an app adopter. Next, we explore how ho-
mophily/heterophily affects the epidemics based on the
app usage.

The Fig. 5 illustrates that increasing heterophily al-
ways leads to larger epidemics and lower epidemic thresh-
old. Increasing homophily from random mixing is ini-
tially preferable, but the optimum lies between random
mixing and full homophily. For the expected epidemic
size, strong heterophily is especially detrimental (see
Fig. 5a for the homogeneous network and with random
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FIG. 5. The effect of homophily/heterophily in app adoption
in homogeneous networks. Expected epidemic size at k̄ = 1.8
for (a) random app adoption and for (c) high-degree targeting
strategy. Epidemic threshold for (b) random app adoption
and for (d) the high-degree targeting strategy. Thresholds
are from theoretical results and expected epidemic sizes are
from percolation simulations. The empty white region is the
spectrum that having such a homo/heterophilic population is
impossible.

app adoption and in Fig. 5c for high-degree targeting
strategy). The optimum value for heterophily/homophily
is especially visible for the epidemic thresholds in Fig. 5b
and Fig. 5d, respectively, for the random and high-degree
targeting strategies.

IV. DISCUSSIONS

We expand the framework of using consistency equa-
tions to analyze digital contact tracing [33], which is an
alternative to other approaches [60]. Contrary to the con-
ventional SIR spreading, a full picture of the late-state
epidemics in the presence of digital contact tracing is not
given by a single observable (the component size) but
one also needs two variables (normal and extended com-
ponent sizes). These correspond to the probability of the
epidemic and the epidemic size, which are equivalent in
the SIR process. Here we see that the two quantities
can be significantly different if the number of application
users is high.

Our numerical work illustrates that the results of dig-

ital contact tracing can be very sensitive to the network
structure, how applications are distributed among the
population and how well the tracing works. That is, re-
alistic estimates of the effects of digital contact tracing
can only be achieved if one is able to choose correct pa-
rameter ranges in a high-dimensional parameter space.
In this study, we had 6 of such parameters: shape of
the degree distribution, average degree, amount of het-
erophily/homophily, application prevalence, quarantine
probability and targeting strategy. While we were able
to establish and confirm basic laws governing individ-
ual parameters and some combinations of parameters,
exploring such a parameter space fully for possible com-
pound effects is out of the reach. However, these types of
effects can be largely revealed by inspecting the analytic
equations we derived.

There are of course several open questions for which
the results are only hinted by this study and other stud-
ies. Clearly, there are types of network structures we ig-
nore here. For example, the heterophily and homophily
could be constructed in the network in slightly different
ways. From a practical point of view, one could create
networks based on real age-based contact structures and
digital contact tracing prevalence and estimate the ben-
efits of applications relative to the risk groups.

Overall the problem of digital contact tracing offers
not only a practical problem to solve, but an interest-
ing theoretical puzzle, because it introduces memory to
the epidemic process. This memory is limited to one
step within the tracing model we use here, but one could
also use multi-step tracing, where also the second neigh-
bors of infected nodes are quarantined in the case that
the first neighbors have already passed on the infection.
Further, here we ignore effects such as quarantines that
do not directly stop the infection from one application
user to another from spreading further. However, in the
case that there is a strong group structure in the net-
work, there could be for example situations where a non-
application user A infects application user B who alerts
another application user C, who actually gets infected
by A and stops the spreading because of the quarantine.
Analyzing such more complicated phenomena can pro-
vide challenges for network scientists for years to come.
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[55] S. Clémençon, H. De Arazoza, F. Rossi, and V. C. Tran,
A statistical network analysis of the hiv/aids epidemics
in cuba, Social Network Analysis and Mining 5, 1 (2015).

[56] J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, and W. M.
Getz, Superspreading and the effect of individual varia-
tion on disease emergence, Nature 438, 355 (2005).

[57] K. Kupferschmidt, Why do some covid-19 patients infect
many others, whereas most don’t spread the virus at all,
Science 10 (2020).

[58] S. L. Feld, Why your friends have more friends than you
do, American Journal of Sociology 96, 1464 (1991).

[59] M. E. Newman, Threshold effects for two pathogens
spreading on a network, Physical review letters 95,
108701 (2005).

[60] G. Bianconi, H. Sun, G. Rapisardi, and A. Arenas,
Message-passing approach to epidemic tracing and miti-
gation with apps, Physical Review Research 3, L012014
(2021).

[61] I. Kryven and C. Stegehuis, Contact tracing in configu-
ration models, Journal of Physics: Complexity 2, 025004
(2021).

[62] A. Allard, C. Moore, S. V. Scarpino, B. M. Althouse,
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