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When a fraction of a population becomes immune to an infectious disease, the
population-wide infection risk decreases nonlinearly due to collective protection,
known as herd immunity. Some studies based on mean-field models suggest that natural
infection in a heterogeneous population may induce herd immunity more efficiently
than homogeneous immunization. However, we theoretically show that this is not
necessarily the case when the population is modeled as a network instead of using the
mean-field approach. We identify two competing mechanisms driving disease-induced
herd immunity in networks: the biased distribution of immunity toward socially active
individuals enhances herd immunity, while the topological localization of immune
individuals weakens it. The effect of localization is stronger in networks embedded
in a low-dimensional space, which can make disease-induced immunity less effective
than random immunization. Our results highlight the role of networks in shaping herd
immunity and call for a careful examination of model predictions that inform public
health policies.

epidemics | herd immunity | network theory

A key challenge in infectious disease control is to protect a population by conferring
immunity (1–6). When some individuals gain immunity and become no longer
susceptible to a disease, those without immunity also enjoy a reduced risk of infection
because they are less likely to come into contact with others who can transmit the disease.
Due to this indirect protection, the presence of immune individuals has a nonlinear
impact on the overall level of protection in the population. This concept is known in
epidemiology as herd immunity (7–10). In particular, it is often presumed that there is a
critical proportion of immune individuals—the herd immunity threshold—above which
the chain of transmission cannot be sustained, and hence, the disease cannot invade the
population.

Although the term “herd immunity” was coined and a rudimentary understanding of
the phenomenon emerged around 1920, it was not until the 1970s that a quantitative
theory of herd immunity was developed through mathematical modeling (10–13). The
main focus was on estimating the vaccine coverage necessary for disease elimination. A
simple expression for estimating the herd immunity threshold was obtained using a basic
model that assumes immunization of a homogeneous, fully mixed population (14). At the
same time, much theoretical effort has been devoted to bridging the gap between such
simplifying assumptions and the heterogeneity of real-world populations (7, 14–19).
Such population heterogeneity can be leveraged to design efficient, targeted vaccination
strategies.

In general, immunity to an infectious disease can be acquired not only by vaccination
but also by previous infection. In their seminal paper (20), Kermack and McKendrick
derived what is now known as the final size equation, which implies the notion of disease-
induced herd immunity where an epidemic of a disease that confers immunity after
recovery can end before the susceptible population is exhausted. More recently, disease-
induced herd immunity has gained renewed attention, particularly in the context of the
COVID-19 pandemic (21–25), for which no vaccine was available at the early stage. If one
assumes a homogeneous and fully mixed population, disease-induced and vaccination-
induced herd immunity are mathematically equivalent. However, this equivalence breaks
down when variation in contact patterns is introduced. Britton et al. (21) showed
that the threshold for disease-induced herd immunity in a heterogeneous population
is considerably lower than expected in the homogeneous case; similar conclusions were
drawn by several studies that adopted data-driven modeling approaches for COVID-
19 (22–25) and more recently for mpox (26, 27). The essential reason for the lower
threshold is that individuals with more contacts are more likely to get infected and become
immune in an outbreak; epidemic spread thus effectively acts as targeted immunization.
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However, these results are derived using stratified mass-action
models defined by differential equations or network models
where nodes are randomly linked at every time step. In such
modeling approaches, even if population heterogeneities are
considered in terms of metapopulations defined by age, house-
hold, or spatial separation (28–37), the microscopic structure
of persistent interactions between individuals is coarse-grained
away and the correlations between the epidemiological states of
individuals are disregarded. In other words, these models assume
that interactions occur in a mean-field manner where individual
details are replaced by averages. While these assumptions provide
a convenient starting point, they are seldom met in real-
world populations. In reality, interactions often occur repeatedly
between the same pairs of individuals and are heavily influenced
by social and spatial constraints. Such characteristics are better
captured by modeling the contact structure as a static network
that encodes these constraints (38–40). In a static network model,
the set of individuals one interacts with is assumed to be finite
and fixed.

In this study, we use network epidemic models to reexamine
how immunity induced by a past epidemic affects the outcome of
future epidemics. Building on earlier studies that demonstrate the
role of network structure in disease-induced herd immunity (41–
47), we aim to unpack the mechanisms that shape herd immunity
induced by disease and to highlight the fundamental difference
between the network model and mean-field model of herd
immunity.

Our key finding is that in network models, disease-induced
herd immunity is driven not only by the disproportionate
distribution of immunity among socially active individuals—
as already identified in mean-field models—but also by another,
counteracting mechanism inherent to network models. In an
outbreak originating from a single source (an initially infected
individual), the set of individuals who become infected and
subsequently immune is necessarily topologically contiguous in
the network. We refer to this as localization of immunity: Since
every immune node after an outbreak is adjacent to at least one
other immune node, immunity is strongly correlated between
neighbors and topologically clustered in the network compared
to randomly distributed immunity; see Fig. 1A for a schematic
illustration. Consequently, the interface between immune and
susceptible nodes is small: there are fewer edges between
immune and susceptible nodes than there would be without such
localization. This means that susceptible nodes are less protected
because fewer of their neighbors are immune, which allows chains
of infection that would otherwise be blocked to reach them.
They also have more susceptible neighbors to infect, should
they become infectious. Such mixing heterogeneities between
susceptible and immune subpopulations resemble those discussed
in the context of vaccination and other interventions (48–53).

We find that the localization of immunity has a significant
impact on herd immunity even in maximally random networks.
In homogeneous and/or spatially embedded networks, the effect
of immunity localization on herd immunity is even more
pronounced and can be strong enough to offset the advantage of
disease-induced immunity over randomly distributed immunity.
Notably, the localization of immunity cannot be accounted for by
mean-field models as typically used in the literature. As a result,
mean-field models may overestimate the strength of disease-
induced herd immunity.

The rest of the paper is organized as follows. First, we formalize
how we quantify the effect of herd immunity in the network
setting. We then show that unlike in the mean-field view, in
network models disease-induced herd immunity differs from the

effect of randomly distributed immunity. In particular, the net
effect of disease-induced herd immunity is determined by the
competition between two mechanisms: the biased distribution of
immunity toward highly connected nodes and the localization
of immunity within the network topology. After illustrating
the effect of each mechanism in configuration model networks
with different levels of heterogeneity in node degree (number of
adjacent nodes), we quantify the effect of localization as a function
of the level of spatiality of the network. Finally, we illustrate the
model specificity of herd immunity by showing that, in epidemic
models informed by empirical population structure, a population
that the mean-field model considers as completely protected can
still be invaded by the disease in the network model.

Results

In the following, we use herd immunity as a broad term to
describe any indirect protection of susceptible individuals against
infection by the presence of immune individuals. This includes
but is not limited to complete herd immunity associated with
a herd immunity threshold, where any sustained transmission
of the disease is prevented. Throughout, we assume immunity
to be permanent and complete, fully preventing infection and
transmission.

We use the canonical susceptible–infected–recovered (SIR)
model to describe the dynamics of nonrecurrent epidemics.
Individuals and the contacts between them are represented as
nodes and edges in an undirected contact network of size N .
We assume that the contact network is large enough to consider
the limit N → ∞. We also assume that the contact network is
quenched, i.e., remains static throughout the epidemic timescale.
See Methods for details on the epidemic model, simulation
methods, and analytical calculations.

We are interested in comparing two different scenarios
in which immunity is introduced into a fully susceptible
population. The first scenario is disease-induced immunity,
where individuals gain immunity through contracting the
disease. An epidemic spreads from a source node until it
eventually dies out, rendering the nodes that have experienced
infection permanently and completely immune to future
reinfection. In the second scenario, random immunization,
susceptible individuals are selected uniformly at random from the
network and then permanently and completely immunized. This
scenario embodies the outcome of homogeneous vaccination,
while it can also be interpreted as the mean-field view of
immunity acquired through any means, as there is no correlation
between the immunity of neighboring nodes.

Regardless of how immunity is induced, its protective effect at
the population level is measured by how much future outbreaks
are reduced in size and in likelihood of occurrence. In the case
of disease-induced immunity, such post-immunity outbreaks can
be caused by a more infectious variant of the original pathogen
that induced immunity. Consider now the network of nodes
that remain susceptible after the immunity-inducing epidemic or
after random immunization. When a fraction �R of nodes are
immune, the proportion of this residual subgraph (41–47, 54–
59) is 1 − �R , providing an upper bound for a post-immunity
outbreak due to direct protection.

The actual size of the post-immunity epidemic depends on
the transmissibility of the disease. However, even if the disease
is infectious enough to be always transmitted from an infected
individual to a susceptible neighbor, an epidemic caused by a
single introduction cannot grow larger than the largest connected
component of the residual subgraph. When the size of this largest
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A B

C

Fig. 1. Models. (A) Comparison between the distributions of the same number of immune individuals (nodes) induced by disease spreading and by random
immunization in a random geometric graph. Immune nodes are colored purple, while susceptible nodes are light green if they belong to the largest component
of the residual subgraph and gray otherwise. The edges not included in the residual subgraph are represented by broken lines, with thin purple edges connecting
two immune nodes and thick black edges connecting immune nodes and residual nodes. (B) Schematic illustration of structural herd immunity characterized by
the giant residual component size �SG as a function of the immune fraction �R (thick solid line). The gray area corresponds to the population indirectly protected
by structural herd immunity. The green dashed curves are examples of sizes of post-immunity epidemics, with increasing transmissibility from left to right. The
intersections of these curves with the horizontal axis indicate thresholds to complete herd immunity; the limiting value �c marks the structural herd immunity
threshold. (C) Network models used in this study, positioned according to their level of degree heterogeneity (vertical axis) and spatiality (horizontal axis).

connected component scales with N , we call it the giant residual
component and denote its relative size by �SG . Naturally, �SG ≤

1−�R , where the equality holds only when the residual subgraph
is connected.

Within the class of network models we consider in this work,
the giant residual component is the only connected component
in the residual subgraph whose size scales with N . For large
N , all smaller connected components in the residual subgraph
become negligible in size. Consequently, nodes in these small
components are almost certainly shielded from future epidemics
of any transmissibility despite not being immune because their
risk of exposure is vanishingly small. We refer to this type
of indirect protection as structural herd immunity: there are
susceptible nodes that are isolated by the immune nodes in the
residual contact network.

The effect of structural herd immunity can be quantified by
the sum of the sizes of the small components or, equivalently, by
the difference between the size of the residual subgraph and its
giant component, 1 − �R − �SG (Fig. 1B). If there is no giant
component in the residual subgraph (i.e., �SG → 0 when N →
∞), all residual nodes are indirectly protected, and complete
herd immunity is achieved regardless of the infectiousness of the
disease. The value of�R at which the giant component disappears,
denoted by �c, signifies the structural herd immunity threshold.

The fraction of nodes �SG in the giant residual component,
which represents the maximum possible epidemic size, can vary
depending on the specific distribution of immune nodes on the
network even if their fraction �R is the same. In particular,
we focus on two aspects of how disease-induced immunity is
distributed in the network: its bias toward high-degree nodes
and its localization. We quantify the first with the ratio 〈k〉R/〈k〉
between the mean degree of immune nodes and the mean
degree of the entire network. The second aspect, localization
of immunity, refers to how adjacent immune nodes are in the
network—in a maximally localized configuration, there are as
many edges between the immune nodes as possible and in a
nonlocalized configuration, immune nodes are located randomly
in the network. In the following, we measure the localization
of immunity straightforwardly by the share of interface edges
between the immune and residual subgraphs, �SR = ESR/E ,
where ESR is the number of edges between susceptible and
immune nodes and E is the total number of edges in the
network. This measure is linearly related to the correlation
coefficient between the epidemiological states of adjacent nodes
(SI Appendix, section A). When immune nodes are more
localized, i.e., likely to be adjacent to each other in the network,
there are fewer edges at the interface between the two subgraphs.
Conversely, in a nonlocalized configuration, the interface is larger

PNAS 2025 Vol. 122 No. 28 e2421460122 https://doi.org/10.1073/pnas.2421460122 3 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 A
bb

as
 K

. R
iz

i o
n 

Ju
ly

 1
0,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
13

0.
23

3.
20

.2
33

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2421460122#supplementary-materials


and as the susceptible nodes at the interface have at least one
immune neighbor, there are fewer edges to carry a subsequent
infection (Fig. 1A).

Epidemic dynamics is largely influenced by individual variance
in contact and transmission patterns (60–62), which translates
to the heterogeneity of node degrees in the contact network. The
paradigmatic network model used to express degree heterogeneity
is called the configuration model, where the distribution of
node degrees solely determines the network structure (63). In
a configuration model network, the structure is locally tree-like,
meaning that the likelihood of a node being part of a finite-
length cycle diminishes as the network size increases. This feature
often simplifies analytical calculations and makes the model more
tractable.

However, real-world contact networks through which diseases
are transmitted are hardly tree-like; rather, they are characterized
by the abundance of short cycles. This is because contact
and transmission between individuals can only occur when
individuals are physically close to each other. If two individuals
have a common neighbor in the contact network, they are likely
to be near each other, which implies a high probability that they
are also connected. As a result, many triangles and short cycles
are formed. We will refer to the propensity of individuals to be in
contact with other spatially proximate individuals as spatiality.

In this work, we explore a wide range of network structures
that differ in terms of degree heterogeneity and spatiality. Degree
heterogeneity is characterized by the variance of the degree
distribution. For spatial features, we consider that the nodes
are endowed with fixed coordinates in a two-dimensional space.
Then, spatiality can be measured by the average length of edges
(i.e., the average distance between adjacent nodes) in this two-
dimensional space. For example, in random geometric graphs
(RGGs), edge lengths are short because only local contacts are
allowed, representing maximal spatiality, while in Erdős–Rényi
random graphs, nodes are in contact independently of their
spatial positions, resulting in longer edges on average despite
the same Poisson degree distribution. Fig. 1C illustrates these
two features. See Methods for details on the network models used
in this study.

Localization of Disease-Induced Immunity Significantly Weak-
ens Herd Immunity. We first focus on the structural herd
immunity in configuration model networks, where the degree
distribution is the only defining feature. We study, in increasing
order of degree heterogeneity, random regular graphs (RRGs),
Erdős–Rényi random graphs (ERGs), and configuration model
networks with negative binomial and power law (scale-free)
degree distributions. For each of the network ensembles, we first
calculate, both analytically and numerically, the expected size �R
of a large epidemic (an outbreak that infects a finite fraction
of the population) as a function of transmission rate �. Then,
we compute the size of the giant residual component, �SG , for
three cases: after removing the nodes that are naturally infected
in the epidemic (disease-induced immunity), after removing the
same number of nodes but randomly (random immunization),
and after removing the same number of nodes with the same
degrees but randomly. We refer to the third case as proportional
immunization. The analytical calculations are performed using
an averaged message-passing framework (41, 64, 65); see SI
Appendix, section F for details.

The left column of Fig. 2 summarizes our results. For RRGs,
we observe that, strikingly, structural herd immunity induced by
disease is weaker than that of random immunization; the giant

residual component is always larger in the case of disease-induced
immunity (Fig. 2A). As RRGs have no degree heterogeneity and
their structure is entirely random, the strength of herd immunity
is entirely dictated by the localization of immunity in the wake of
the outbreak. The contiguous nature of the subgraph covered by
disease-induced immunity is clearly visible in the smaller size �SR
of the interface between the immune and residual subgraphs.
Conversely, for random immunization, the larger interface is
associated with a high level of structural herd immunity, with a
residual subgraph whose giant component is smaller.

When the contact network is an ERG where node degrees
are moderately heterogeneous, disease-induced immunity and
random immunization result in a giant residual component of
the same size. Although structural herd immunity is strengthened
by the fact that the outbreak disproportionately infects high-
degree nodes, it is weakened to an equal extent by the localization
of immunity after the outbreak. Both effects are visible in
Fig. 2C : the average degree 〈k〉R of immune nodes is higher
for disease-induced immunity, but the size of the susceptible–
immune interface �SR is smaller. The equal magnitude of these
two effects can be shown analytically; we prove in SI Appendix,
section G that the Poisson distribution is, in fact, the unique
degree distribution of the configuration model in which the two
effects exactly offset each other. The giant residual component
size under proportional immunization implies that the structural
herd immunity would be stronger if only the effect of preference
for high-degree nodes were considered: immunizing high-degree
nodes wherever they are positioned in the network results in a
more splintered residual subgraph. This leads to the important
conclusion that if the contribution of localization is neglected,
the strength of disease-induced herd immunity is overestimated.

As the degree heterogeneity of the contact network increases,
the advantage of disease-induced immunity in exploiting de-
gree heterogeneity and residing disproportionately among high-
degree nodes outweighs the localization effect, as seen in the
results for configuration model networks with a negative binomial
degree distribution with dispersion parameter r = 3 (Fig. 2E).
Importantly, disease-induced herd immunity is still significantly
weaker than what would be expected from the degrees of immune
nodes alone. This is clearly visible in the difference in the size of
the giant residual component for disease-induced immunity and
proportional immunization, as well as in the average degrees of
immunized nodes and interface sizes. Qualitatively similar results
are obtained for scale-free networks, corroborating our findings
(Fig. 2G). See SI Appendix, section K for the robustness of our
results against changes in population size and average degree.

To conclude, the net effect of disease-induced herd immunity
is determined by the competition between the biased distribution
of immunity toward high-degree nodes and the localization
of immunity in the network. We observe that localization
significantly weakens structural herd immunity in networks
with any degree distribution: greater localization of immune
nodes leaves the residual subgraph more intact. While the
degree heterogeneity of the contact network amplifies the high-
degree bias of disease-induced immunity and strengthens herd
immunity, it is always counteracted by the effect of localization.
Without this countering effect, structural herd immunity would
be even stronger, as exemplified by the smaller giant residual
component after proportional immunization.

Spatiality Enhances Localization, Which Further Weakens
Disease-Induced Herd Immunity. Unlike the configuration
model networks studied so far, real-world contact networks
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A B

C D
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G H

Fig. 2. Comparison of the strength of herd immunity for different network models. Each row corresponds to a different degree distribution. Within each row,
the left set of panels shows the results for the configuration model network, and the right set of panels shows the results for the corresponding spatial network.
(A) Random regular graph; (B) regular lattice; (C) Erdős-Rényi graph; (D) random geometric graph; (E, F ) networks with a negative binomial degree distribution
(dispersion parameter r = 3); (G, H) networks with a power law degree distribution (exponent � = 3.1). For all networks, the number of nodes is N = 104 and
the average degree is 〈k〉 = 6. The heterogeneous spatial networks (F and H) are generated with a temperature parameter � = 0.05. For each set of panels,
the Left panel shows the size �SG of the giant residual component, the Top Right panel shows the mean degree of immune nodes normalized by the mean
degree of the entire network, 〈k〉R/〈k〉, and the Bottom Right panel shows the fraction of edges between the immune and residual subgraphs, �SR. Symbols
denote numerical results averaged over 50 different realizations, and lines represent analytical predictions by the averaged message-passing approach. The
colors indicate natural infection (red), random immunization (blue), and proportional immunization (yellow). See Methods and SI Appendices, sections E and F
for details of numerical and analytical methods used.

are spatially constrained and are, therefore, effectively low-
dimensional. As the ratio of surface area to volume is smaller in
lower dimensions, one can expect that the susceptible–immune
interface under disease-induced immunity is smaller and that the
effect of localization is more pronounced in networks embed-
ded in low-dimensional space. Accordingly, we expect disease-
induced herd immunity to be weaker in spatial networks. To
study this, we numerically investigate the strength of structural
herd immunity in regular lattices, RGGs, and heterogeneous
random geometric graphs (HRGGs; see Methods for details).

We observe that, for regular lattices, disease-induced immunity
leads to a larger giant residual component than random or

proportional immunization (Fig. 2B), similar to the case for
RRGs. The smaller size of the interface, �SR , implies that the
effect of localization of disease-induced immunity is stronger in
a regular lattice than in an RRG due to its spatiality.

For RGGs, the gap between disease-induced immunity and
random immunization is even larger, confirming the above
hypothesis and implying a greater advantage of random immu-
nization over disease-induced immunity in efficiently shrinking
the giant residual component (Fig. 2D). In an RGG, the
immune nodes under disease-induced immunity have a very
small interface with the residual nodes, indicating that they are
highly localized. This leaves the residual subgraph susceptible to
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a future outbreak, as only a few residual nodes have immune
neighbors that would break chains of transmission and reduce
the size of the largest residual component. Although disease-
induced immunity can exploit the modest heterogeneity of
the Poisson degree distribution, the impact of localization is
much more pronounced, overriding the effect of high-degree
bias of immunity. This is in contrast to the case of ERGs, the
configuration model counterpart of RGGs, where the effects of
the two mechanisms exactly cancel each other out. Note that
in RGGs, the two mechanisms are intertwined; high-degree bias
amplifies localization because of degree correlations.

The impact of spatiality is particularly evident for networks
with higher degree heterogeneity. For a HRGG with a negative
binomial degree distribution, structural herd immunity induced
by natural infection can be weaker than that achieved by random
immunization (Fig. 2F ). Juxtaposed against the configuration
model counterpart, where the opposite result is found, this
highlights that the spatiality of the contact network can boost
the effect of localization to the extent that it overcomes the coun-
teracting effects of biased distribution of immunity toward high-
degree nodes, thus reversing the outcome. In scale-free HRGGs,
characterized by an even higher degree heterogeneity, disease-
induced immunity still proves more efficient than random immu-
nization in dismantling the giant residual component (Fig. 2H ).
Even then, there is a significant gap between �SG for disease-
induced immunity and proportional immunization, highlighting
the effect of immunity localization to attenuate structural herd
immunity. SI Appendix, section K confirms the robustness of our
results to changes in population size and average degree.

We have so far established that the spatiality of the contact
network diminishes the disease-induced herd immunity by
amplifying immunity localization. We next ask: how strongly
does the network need to be embedded in space for the effect of
high-degree bias of immunity to be outweighed by the effect of
immunity localization? To this end, we compare the effectiveness
of disease-induced immunity and random immunization across
the spatiality spectrum. We use the edge rewiring process and the
HRGG model with varying temperatures to cover the spectrum
of spatiality continuously. As a measure of spatiality, we use the
normalized mean edge length 〈d〉/d∗ as described in Methods. In
the configuration model, where the edges are completely random,
we have that 〈d〉/d∗ = 1; edges are shorter for networks that are
more strongly constrained in space. To estimate the effectiveness
of structural herd immunity with a single number, we use the
structural herd immunity threshold and measure the minimum
fraction of nodes that need to be immune to eliminate the giant
residual component: �c = min{�R | �SG = 0}. In other words,
even a disease with an infinitely large transmission rate cannot
invade the population if �R ≥ �c. Thus, �c represents the worst-
case bound for the herd immunity threshold, i.e., the structural
herd immunity threshold. Here, we numerically identify �c as
the minimum value of �R that leads to �SG ≤ 0.01. We let �DII

c
and �RI

c denote the threshold under disease-induced immunity
and random immunization, respectively.

Fig. 3A shows the difference between the structural herd
immunity thresholds of random immunization and disease-
induced immunity, �RI

c − �DII
c , as a function of normalized

mean edge length 〈d〉/d∗ for different degree distributions.
Positive values indicate that �DII

c is smaller, i.e., disease-
induced immunity results in a lower threshold than random
immunization, while negative values imply the opposite. For all
the degree distributions, the difference between the thresholds
increases with spatiality. In other words, the spatiality of the

A

B

Fig. 3. Disease-induced herd immunity as a function of spatiality. Spatiality
is measured by the normalized mean edge length 〈d〉/d∗. (A) Difference in the
structural herd immunity thresholds �RI

c −�
DII
c . Different degree distributions

are indicated by line colors. The shaded area along each line represents the
95% CI. Positive values indicate that natural infection induces a stronger
herd immunity than random immunization, while negative values suggest the
opposite. (B) The maximum (peak value) of �SR as a function of �R for disease-
induced immunity. Smaller values imply stronger localization of immunity.
Note that the value of �R at which �SR is maximized generally does not
coincide with �c.

contact network decreases the relative advantage of disease-
induced immunity. Fig. 3B and SI Appendix, section H show
that, when the degree distribution is held constant, increasing the
spatiality of the network generally shrinks the interface, implying
that disease-induced immunity becomes increasingly localized.
This increase in localization corresponds with the decrease in
the strength of structural herd immunity from natural infection
shown in Fig. 3A. Therefore, the more spatial the networks
are, the more localized disease-induced immunity becomes, and
consequently, the weaker the herd immunity acquired through
natural infection.

As we have already seen, for Poisson degree distributions,
the two immunity scenarios induce an equally strong herd
immunity without spatiality (i.e., at 〈d〉/d∗ = 1). For more
heterogeneous networks, there is a crossover from the regime
where disease-induced immunity is more effective (�DII

c < �RI
c )

to the regime where random immunization becomes more
advantageous (�DII

c > �RI
c ) as the network becomes more

spatial. As the degree distribution becomes broader, as in
negative binomial distributions with increasing variance (i.e.,
decreasing dispersion parameter), the crossover point shifts
toward the spatial end, indicating that a higher level of spatiality
is required to counterbalance the effect of degree heterogeneity
(see also SI Appendix, section I). This highlights the competition
between degree heterogeneity and spatiality of the contact
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network in determining the strength of disease-induced herd
immunity.

Comparing Mean-Field and Network Models with Population
Structure. Our analysis above suggests that disease-induced herd
immunity in network models is driven by high-degree bias and
localization of immunity, while mean-field models only account
for the former. This difference between models has real-world
consequences for estimating the effect of disease-induced herd
immunity. In particular, mean-field models may overestimate
the strength of herd immunity and provide an overly optimistic
outlook. We demonstrate this by showing, based on empirical
contact patterns, that even when the population reaches the
condition of complete herd immunity according to a mean-field
model, the disease can still reinvade the population in a similarly
parameterized network model.

We compare two age-stratified models informed by empirical
data: a mean-field model and a network model of SIR dynamics,
both with the same age structure and age-specific contact patterns.
The age structure is captured by vector p, whose entries are the
proportion pi of the population in each age group i. The contact
patterns are represented by the contact matrix M whose element
Mij represents the average number of contacts an individual in age
group i makes with individuals in age group j. For the contacts
between groups to be symmetric, we impose on the contact matrix
piMij = pjMji.

The mean-field model is defined by the following set of
differential equations:

ṡi = −�isi,
ẏi = �isi − yi,
ṙi = yi.

[1]

Here, si, yi, ri denotes the proportion of susceptible, infected, and
recovered individuals in age group i, respectively, and satisfies
si + yi + ri = 1;  is the rate at which infected individuals
recover; �i is the force of infection to which an individual in age
group i is subject, which is calculated as

�i = �MF
∑
j

Mijyj, [2]

where �MF denotes the transmission rate of the mean-field model.
In this model, the basic reproduction number can be computed
as (28)

R0 =
�MF


Λ(M), [3]

where Λ(·) denotes the spectral radius. By linearizing Eq. 1
around si and yi → 0, we obtain the condition that disease
with transmission rate �MF cannot invade the population:

R0
Λ
(

diag(s)M
)

Λ(M)
≤ 1, [4]

where s denotes the vector of which ith element is si. Thus,
this condition represents complete herd immunity of the mean-
field model, with the left-hand side representing the effective
reproduction number. Note that Eq. 4 is a condition for the
vector s and does not represent a single scalar value of the herd
immunity threshold. There are many different s that make both
sides of Eq. 4 equal, and the herd immunity threshold as the total
proportion of susceptible individuals in the population, given by

p · s, can vary depending on the specifics of the system and
dynamics.

Fig. 4A shows a simulated epidemic with a mean-field model
of the population of Finland in 2007. The age structure (66)
and contact matrix (61, 67) are stratified into 16 age groups.
The basic reproduction number is set to R0 = 3 and the mean
recovery time is set to −1 = 5 d. When the population reaches
the herd immunity threshold defined by Eq. 4, 54.1% of the
total population has contracted the disease. However, due to the
heterogeneity of contact patterns within the population, there is
a large variance in attack rate between age groups, ranging from
10.4% among those over 75 to 73.6% among 25- to 29-y-olds.

We formulate the corresponding network model as follows.
The population of N individuals is divided into age groups, each
with ni ' Npi individuals. The contact network is generated by a
stochastic block model (SBM). The standard SBM assumes that
the probability that individuals are linked to each other depends
only on the groups they belong to. It is defined by the number
of individuals ni in each group i and the edge probability Bij
between an individual in group i and an individual in group j.
The edge probability is related to the contact matrix as

Bij = aMij/nj, [5]

where a is the coefficient that controls the total number of edges
in the network. In addition to the age-stratified contact patterns,
we further incorporate spatiality by considering a mixture of the
SBM and the HRGG model parameterized by temperature �; see
SI Appendix, section D for details.

Using the same age structure and contact matrix of Finland, we
construct the contact network with N = 2×104 and a = 1. For
this setup, the normalized mean edge length 〈d〉/d∗ decreases
nonlinearly with inverse temperature from 〈d〉/d∗ = 1 for
�−1 = 0 to 〈d〉/d∗ = 0.31 for �−1 = 3 and 〈d〉/d∗ = 0.16 for
�−1 = 10. We let an epidemic of R0 = 3 evolve in the network
until it reaches the herd immunity threshold defined by Eq. 4,
at which point we halt the transmission process and let every
infected individual recover. Once the population is free of infec-
tion, we reintroduce the disease into the population by infecting
an individual who remained susceptible during the first epidemic.
If the population has already reached herd immunity during the
first outbreak, the disease will be quickly eliminated, and there
will be no epidemic resurgence that infects a finite fraction of
the population. To highlight the maximum risk, we sample post-
immunity outbreaks of significant sizes, if they occur at all.

Fig. 4B shows the cumulative incidence during the first
epidemic and after the reintroduction of the disease according
to the network model. The size of the first epidemic is hardly
affected by spatiality, varying from an average of 54.2% for
�−1 = 0 to 55.2% for �−1 = 10, which is also consistent
with the results of the mean-field model. Upon reintroduction of
the disease, simulations for standard SBM networks (�−1 = 0)
indicate the occurrence of a relatively small epidemic, affecting
an additional 2.8% on average. When the network is spatially
embedded, we observe a larger resurgence, infecting up to 13.8%
of the population. This suggests that the population is still at
risk, even though the number of immune individuals should be
sufficient to achieve herd immunity according to the mean-field
model. In other words, the mean-field model underestimates
the herd immunity threshold of networked populations in such a
scenario, especially when they are spatially embedded. We discuss
the significance of our results for different population sizes in SI
Appendix, section K and provide an explicit calculation of the
network model threshold in SI Appendix, section L.
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A B

Fig. 4. Comparing mean-field and network epidemic models of the empirical population of Finland. (A) Mean-field model simulation of an epidemic in an
initially susceptible population. The black dashed line represents the cumulative incidence in the entire population, while the solid curves represent the
cumulative incidence in each age group, indicated by different colors. The red dotted vertical line indicates the time at which herd immunity is reached. Inset:
Contact matrix M for Finland’s population. (B) Cumulative incidence in network model simulations of the first epidemic (Left) and after disease reintroduction
(Right). Solid lines show fixed-time averages over 100 realizations, and shaded areas represent 95% CI. The colors of the curves represent spatial SBM networks
with different temperatures: �−1 = 0,3,4,5,10 from light to dark colors, respectively. The Inset in the Right panel shows the kernel density estimate of the final
sizes of post-immunity outbreaks in networks with different temperatures.

Discussion

We have studied the effectiveness of disease-induced immunity
in network epidemic models. We have found that disease-
induced herd immunity is driven by a “tug-of-war” between
two antagonistic factors, both stemming from the distribution of
immune nodes in the network. On the one hand, an epidemic
tends to spread and induce immunity disproportionately among
highly connected nodes, which strengthens herd immunity. On
the other hand, it leads to a localized distribution of immunity
in a topologically contiguous section of the network; this has
the opposite effect, that is, it weakens herd immunity, drawing
parallels to the effects of inhomogeneous vaccine coverage (51).
Importantly, the effect of localization cannot be captured by
mean-field epidemic models.

We have shown that the strength of the effects of the
two mechanisms (high-degree bias and immunity localization)
on disease-induced herd immunity is determined by network
structure. In regular networks, where the degrees are identical and
only localization is at play, disease-induced immunity provides
weaker protection than random immunization. The impact of
high-degree bias of immunity increases as the degree distribution
becomes more heterogeneous. In Erdős–Rényi graphs (ERGs)
that display a moderate amount of degree heterogeneity, the two
mechanisms are equally influential, with their effects canceling
each other out exactly. In more degree-heterogeneous configura-
tion model networks, disease-induced immunity is more effective
than random immunization in conferring protection. However,
even in this case, we found that immunity localization attenuates
collective protection to a lower level than expected from the
degree distribution of immune nodes alone.

When spatiality is added to the picture, the effect of immunity
localization is boosted. Notably, even in a degree-heterogeneous
network where the distribution of disease-induced immunity is
strongly biased toward high-degree nodes, its advantage over
random immunization may be offset and overturned because
the strong localization weakens the amount of structural herd
immunity. We have shown that increasing spatiality generally
makes disease-induced herd immunity weaker compared to
random immunization. The competition between spatiality and
degree heterogeneity of the network is evident from the fact
that the former needs to be compensated for by the latter for

disease-induced immunity to be more effective than random
immunization. In summary, our results suggest that the two
underlying mechanisms of disease-induced herd immunity are
each influenced by one of the two features of network topology.
While degree heterogeneity promotes the effect of the biased
distribution of immunity toward high-degree nodes, spatiality
enhances the impact of immunity localization.

The difference in the mechanisms of disease-induced herd
immunity, namely the presence/absence of the effect of immunity
localization, can lead to a discrepancy in the estimated strength
of herd immunity between mean-field and network models. We
have shown that this inconsistency can arise in stylized models
of a real-world population. Even when the mean-field model
deems that the population has reached complete herd immunity
through natural infection, the disease can reinvade the population
in a network model. In other words, the mean-field model
estimates a lower threshold and a stronger herd immunity than
the network model. Note that this discrepancy is not due to the
spatial structure of the network; even when the network model
is informed with the same contact data as the mean-field model,
its herd immunity threshold is higher.

The tension between the two models stems from the fact that
the mean-field model does not account for dynamical correlations
between the epidemiological states of individuals. It implicitly
assumes that the population is mixed much faster than the
epidemic dynamics. The network model, on the other hand,
represents the slow-mixing regime; the contact partners of each
individual remain the same throughout the epidemic (68). This
gives rise to dynamical correlations that manifest themselves in
the localized distribution of immune nodes after the spreading of
the disease.

In studying network epidemic models, we have based our
argument on the notion of structural herd immunity embodied
by the residual subgraph and its giant component. Although the
notion of giant residual component has been used in previous
network literature (41–43), it is not a common practice in
epidemiology, where herd immunity is usually characterized
against a disease with a specific transmissibility. There are two
different ways to interpret what the giant residual component
represents. On the one hand, it represents the individuals who will
with certainty be infected in a post-immunity epidemic caused
by a highly infectious pathogen (i.e., when the transmissibility is
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infinite). On the other hand, it represents the population that is
still at risk of becoming infected in a post-immunity epidemic of
lower transmissibility. When the pathogen is infectious enough
to spread in the giant residual component but not infectious
enough to infect it entirely, any individual in it can still be infected
in the post-immunity epidemic: exactly who will be infected is
determined by the stochasticity of seeding and transmission. In
contrast, individuals in the smaller components of the residual
subgraph are exempt from the risk of infection. This is seen
in how the structural constraints affect the final sizes of post-
immunity epidemics with specific transmissibility (SI Appendix,
section J): the results are remarkably consistent with the findings
for structural herd immunity.

In a mean-field model, be it a fully mixed mass-action model or
a stratified population model parameterized by a contact matrix,
an implicit assumption is that every individual interacts with
every other individual. This can be mapped to a fully connected
contact network (a complete graph). When a subset of nodes is
immune and removed from this contact network, the residual
subgraph is naturally a complete graph and forms a single
connected component. In other words, the residual subgraph
is identical to its giant component. This means that i) if the
disease is transmissible enough, every individual in the residual
subgraph will be infected in a post-immunity epidemic, and ii)
some susceptible individuals may not get infected in a post-
immunity epidemic of a less infectious disease because of herd
immunity, but no one is free from the risk of infection.

We remark that epidemic localization in a network has been
discussed in a different context, namely, for the susceptible–
infected–susceptible model of recurrent infection (69–72). In
these works, the term “localization” implies that infection tends
to reside disproportionately on nodes with certain connectivity
patterns, such as nodes with high degrees, in inner k-cores, and
in dense subgraphs. In our work, we focus on nonrecurrent
diseases and define localization in terms of strong correlations
between the immunity of adjacent nodes as a result of infection
spreading over a contiguous region of the network. Despite the
different implications of the term, both lines of work recognize
the importance of the interplay between network structure and
epidemic dynamics.

The concept of disease-induced immunity, particularly its
threshold, gained significant attention during the early stages
of the COVID-19 pandemic before vaccines became available.
Mean-field model predictions suggested that the threshold was
lower than expected, leading to policy discussions in some
countries on the possibility of protecting high-risk groups
by allowing those at lower risk of severe illness to acquire
immunity through infection (73–77). In addition to several
issues raised by this approach, including ethical concerns, the
assumption that at-risk individuals can be identified, and the
assumption of permanent and complete immunity (78–80), our
analysis suggests that the optimistic projections were, in part,
a consequence of the peculiarities inherent in the mean-field
models used for estimation.

We emphasize that our aim is not to claim that network
models are an accurate depiction of reality. Rather, our results
indicate that there is a strong model dependence in the estimation
of the strength of herd immunity, which calls for caution in
interpreting the results of any mathematical model of infectious
disease and warrants careful consideration of its underlying
assumptions. The mean-field modeling approach, albeit widely
used in epidemic modeling, implicitly assumes a particular set
of idealized assumptions that may bias its estimation of disease-
induced herd immunity. Outcomes of stylized network models

that account for repeated and spatially constrained contacts
highlight the need to reassess conclusions drawn from mean-
field models in light of more realistic interaction structures. We
stress that our network models are also highly simplified and
their outcomes are to be taken as theoretical. In this work, we
have deliberately disregarded several characteristics of contact
patterns in real-world populations in order to single out the effects
of two prominent structural features: degree heterogeneity and
spatiality.

An advantage of the network approach is that it allows us to
build a more individualistic and structural understanding of herd
immunity, rather than quantifying it only in terms of thresholds
and final epidemic sizes. From this perspective, the role of
correlations and inhomogeneities in the network microstructure
as well as the presence of mesoscopic structures (81–84) on herd
immunity remain to be understood. Furthermore, contacts in
real-world populations are not static but associated with specific
times, durations, and frequencies. In particular, a large fraction
of human interactions occur recurrently with a small set of
others (e.g., family, friends, colleagues) while there may be
many random encounters of limited duration in public places.
In other words, real-world contact networks lie somewhere on
the spectrum between the slow and fast mixing regimes. This
calls for improved models of contact networks beyond the static,
binary ones we have used in our work. Extending our framework
for analyzing herd immunity to account for temporality of
interactions (85) and heterogeneity in contact frequency and
duration is an important goal for future research.

Methods

Epidemic Model. The SIR model on a static network is defined as follows. The
dynamical state of each node is either susceptible, infected, or removed, and
this state is updated in continuous time. Transmission occurs between each
connected pair of an infected node and a susceptible node independently at
rate �, after which the susceptible node becomes infected. Each infected node
transitions to the recovered (immune) state at rate  . The nodes in the immune
state can no longer become infected or transmit the disease and are thus
effectively removed from the system. In this work, we set  = 1 unless specified
otherwise.

In our numerical simulations, we compute the outcome of the SIR model by
mapping it to an epidemic percolation network (86), a directed network that
exactly encodes the stochastic epidemic dynamics on the original network. This
mapping significantly simplifies the numerical analysis; for instance, all the
nodes that will be infected in an outbreak can be obtained as the descendants
of the initially infected nodes in the epidemic percolation network. The details
of the epidemic percolation network framework can be found in SI Appendix,
section E.

We derive the message-passing formalism for bond percolation (65) to
analytically calculate relevant quantities, such as giant residual component�SG

,
average immune node degree 〈k〉R, and the boundary size between susceptible
and immune nodes, �SR. For configuration model networks, this method is
equivalent to the probability generating function method for solving bond
percolation (41, 64). We discuss the details of the message-passing formalism
in SI Appendix, section F.

Network Structures. In this study, we use different network models to control
two key topological properties: degree heterogeneity and spatiality. Degree
heterogeneity refers to the variance in node connectivity. Node degrees are
as homogeneous as possible when all nodes have the same number of
neighbors, i.e., the degree distribution is degenerate, as in RRGs and regular
lattices. ERGs and RGGs, the degrees are moderately heterogeneous and follow
Poisson distributions, where the variance is equal to the mean. At the more
heterogeneous end of the spectrum, the network is characterized by the presence
of nodes with significantly more connections than average. We use negative
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binomial distributions (parameterized by dispersion parameter r; a smaller r
implies a more heterogeneous degree distribution) and power law distributions
(parameterized by exponent −�; a smaller � implies a more heterogeneous
degree distribution) to represent such high heterogeneity. For all the network
models, we fix the mean degree 〈k〉 = 6.

Spatiality refers to the extent to which the underlying geometric configuration
of nodes within a low-dimensional metric space determines the connectivity
between them. Here, each node occupies a position in the underlying space. In
a highly spatial network, the nodes are more likely to be linked to each other
if they are closer to each other in space. This is the case for regular lattices
and RGGs. At the nonspatial end of the spectrum is the family of configuration
network models, such as RRGs and ERGs, representing maximum randomness
under the given degree distribution.

We adopt two different approaches to interpolate continuously between
spatial and random networks. We use an edge randomization scheme to tune
the spatiality for relatively homogeneous networks with degenerate and Poisson
degree distributions. Starting with an instance of a network model with the
highest spatiality, i.e., a lattice or an RGG, we rewire a fraction � of all edges by
exchanging the endpoints of two randomly selected edges (87). This process,
commonly known as the double edge swap, preserves the degree of each
node and allows us to adjust the spatiality without altering the original degree
distribution. By completely randomizing edges (i.e., � = 1), the double edge
swap operation transforms a lattice into an RRG and an RGG into an ERG. See SI
Appendix, section B for details of the edge rewiring process.

To explore the spatial network topologies with higher levels of degree
heterogeneity, we adopt the heterogeneous random geometric graph (HRGG)
model proposed by Boguñá et al. (88), which allows us to control the degree
distribution and spatiality independently. In the HRGG model, each node is
assignedanexpecteddegreeandapositioninametricspace,whichisassumedto
be a two-dimensional unit square with periodic boundaries. Given the expected
degrees and positions, the model generates random networks that satisfy the
following properties: i) the degree of each node is a Poisson random variable
with expectation equal to the expected degree assigned to the node; ii) the
spatiality of the network is expressed as the propensity of nodes to form local
connections in the underlying space, which is governed by an independent
parameter called the temperature � > 0. Low values of � imply that nodes in
proximity are more likely to be linked, and thus, the generated network is more
strongly embedded in the space. On the other hand, in the limit of � →∞, the
edges are agnostic to the positions of nodes in the underlying space, making the
model equivalent to the configuration model. We use this model to generate
networks with Poisson and negative binomial degree distributions with varying

levels of spatiality. Note that this model cannot generate networks with a degree
distribution more homogeneous than Poisson. See SI Appendix, section C for
details about the HRGG model.

The two methods both induce randomness in the connection patterns
between nodes embedded in space, but in different ways. We use the mean
spatial length of edges to evaluate the spatiality of the generated networks
in a unified manner. The length dij of the edge between nodes i and j is the
Euclidean distance between the positions of i and j in the underlying space, and
〈d〉 denotes the mean length of all edges. A completely rewired network with
� = 1 and a “hot” HRGG with � → ∞ are equivalent to the configuration
model; in such cases, the mean edge length is equal to the expected distance
d∗ between two random points:

d∗ = 4
∫ 1

2

0

∫ 1
2

0

√
x2 + y2 dxdy

=

√
2 + ln(

√
2 + 1)

6
' 0.3826 . . . .

[6]

On the other hand, when� = 0 or � → 0, each node is connected exclusively
to other nodes in their proximity; therefore 〈d〉 → 0 in the large system size
limit. Between these two extremes, 〈d〉 responds monotonically as a function
of � or � . We adopt 〈d〉/d∗ as the normalized measure that represents the
randomness of a network with respect to the underlying space.

Data, Materials, and Software Availability. Previously published data were
used for this work. All the data used for the empirical population simulation
are publicly available: the age structure data are available in the Demographic
Statistics Database by the United Nations Statistics Division, https://unstats.
un.org/unsd/demographic-social/. The contact matrix data are available in the
supporting information of Prem et al. (67) with the identifier (https://doi.org/
10.1371/journal.pcbi.1005697.s002). The code used in this study is publicly
available at https://version.aalto.fi/gitlab/hiraokt1/herd_immunity/.
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